评估等位基因 Mi-1.2 的剂量效应对一些番茄砧木对带毒和无毒 Meloidogyne spp.

IF 1.2 4区 生物学 Q2 ZOOLOGY Nematology Pub Date : 2024-02-08 DOI:10.1163/15685411-bja10308
Márcia Gabriel, Marcilene F. A. Santos, V. S. Mattos, Sheila F. Almeida, L. Boiteux, R. G. Carneiro
{"title":"评估等位基因 Mi-1.2 的剂量效应对一些番茄砧木对带毒和无毒 Meloidogyne spp.","authors":"Márcia Gabriel, Marcilene F. A. Santos, V. S. Mattos, Sheila F. Almeida, L. Boiteux, R. G. Carneiro","doi":"10.1163/15685411-bja10308","DOIUrl":null,"url":null,"abstract":"\nThe -1.2 gene confers broad-spectrum resistance to populations of at least 13 Meloidogyne species, being present in a wide range of commercial tomato (Solanum lycopersicum) cultivars. A more refined assessment of the allelic dosage effects of the -1.2 gene to virulent and avirulent Meloidogyne populations may provide relevant information for the management of the durability of the resistance under field conditions. Herein, the allelic dosage effects (homozygous vs heterozygous at the -1.2 locus) on the phenotypic expression of resistance were evaluated against one -1.2-virulent and six avirulent Meloidogyne spp. populations. Seven tomato rootstocks with distinct allelic conditions at the -1.2 locus and one susceptible control (‘Santa Clara’) were used in the present study. Significant dosage effects of -1.2 alleles in reducing the reproduction factors (RF) were observed, but restricted to the avirulent Meloidogyne populations. Homozygous resistant (-1.2/-1.2) cultivars, except TD1, prevented reproduction of almost avirulent Meloidogyne spp. populations in contrast with the heterozygous allele combination (-1.2/-1.2), which allowed a certain level of nematode reproduction. The efficiency and durability of the -1.2 gene depend on its proper management under commercial field conditions. Heterozygous (-1.2/-1.2) plants will increase the population of Meloidogyne spp., with no drastic reduction as occurring in the case of homozygous resistant, and they allow a small reproduction of more adapted sub-populations of the nematode, which might increase over time. Therefore, our results strongly indicated that the employment (whenever possible) of hybrids carrying the double dosage of the -1.2 gene would reduce the potential of high nematode populations in plants with this allelic configuration.","PeriodicalId":18928,"journal":{"name":"Nematology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of allelic Mi-1.2 dosage effects on levels of resistance to virulent and avirulent Meloidogyne spp. populations in some tomato rootstocks\",\"authors\":\"Márcia Gabriel, Marcilene F. A. Santos, V. S. Mattos, Sheila F. Almeida, L. Boiteux, R. G. Carneiro\",\"doi\":\"10.1163/15685411-bja10308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe -1.2 gene confers broad-spectrum resistance to populations of at least 13 Meloidogyne species, being present in a wide range of commercial tomato (Solanum lycopersicum) cultivars. A more refined assessment of the allelic dosage effects of the -1.2 gene to virulent and avirulent Meloidogyne populations may provide relevant information for the management of the durability of the resistance under field conditions. Herein, the allelic dosage effects (homozygous vs heterozygous at the -1.2 locus) on the phenotypic expression of resistance were evaluated against one -1.2-virulent and six avirulent Meloidogyne spp. populations. Seven tomato rootstocks with distinct allelic conditions at the -1.2 locus and one susceptible control (‘Santa Clara’) were used in the present study. Significant dosage effects of -1.2 alleles in reducing the reproduction factors (RF) were observed, but restricted to the avirulent Meloidogyne populations. Homozygous resistant (-1.2/-1.2) cultivars, except TD1, prevented reproduction of almost avirulent Meloidogyne spp. populations in contrast with the heterozygous allele combination (-1.2/-1.2), which allowed a certain level of nematode reproduction. The efficiency and durability of the -1.2 gene depend on its proper management under commercial field conditions. Heterozygous (-1.2/-1.2) plants will increase the population of Meloidogyne spp., with no drastic reduction as occurring in the case of homozygous resistant, and they allow a small reproduction of more adapted sub-populations of the nematode, which might increase over time. Therefore, our results strongly indicated that the employment (whenever possible) of hybrids carrying the double dosage of the -1.2 gene would reduce the potential of high nematode populations in plants with this allelic configuration.\",\"PeriodicalId\":18928,\"journal\":{\"name\":\"Nematology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nematology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1163/15685411-bja10308\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nematology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1163/15685411-bja10308","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

-1.2基因对至少13种褐飞虱种群具有广谱抗性,广泛存在于商业番茄(Solanum lycopersicum)栽培品种中。对 -1.2 基因对有毒力和无毒力的 Meloidogyne 种群的等位基因剂量效应进行更精细的评估,可为田间条件下抗性持久性的管理提供相关信息。本文评估了等位基因剂量效应(1.2 基因座上的同源基因与杂合基因)对抗性表型表达的影响。本研究使用了 7 种 -1.2 基因座等位基因条件不同的番茄砧木和 1 种易感对照('Santa Clara')。在降低繁殖系数(RF)方面观察到了 -1.2 等位基因的显著剂量效应,但仅限于无抗性的 Meloidogyne 种群。除 TD1 外,同源抗性(-1.2/-1.2)栽培品种阻止了几乎无毒的 Meloidogyne 种群的繁殖,而杂合等位基因组合(-1.2/-1.2)则允许一定程度的线虫繁殖。-1.2 基因的效率和耐久性取决于在商业化田间条件下的适当管理。杂合(-1.2/-1.2)植株会增加 Meloidogyne spp.因此,我们的研究结果有力地表明,(在可能的情况下)使用携带-1.2 基因双剂量的杂交种,将降低具有这种等位基因结构的植物中线虫种群数量增加的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of allelic Mi-1.2 dosage effects on levels of resistance to virulent and avirulent Meloidogyne spp. populations in some tomato rootstocks
The -1.2 gene confers broad-spectrum resistance to populations of at least 13 Meloidogyne species, being present in a wide range of commercial tomato (Solanum lycopersicum) cultivars. A more refined assessment of the allelic dosage effects of the -1.2 gene to virulent and avirulent Meloidogyne populations may provide relevant information for the management of the durability of the resistance under field conditions. Herein, the allelic dosage effects (homozygous vs heterozygous at the -1.2 locus) on the phenotypic expression of resistance were evaluated against one -1.2-virulent and six avirulent Meloidogyne spp. populations. Seven tomato rootstocks with distinct allelic conditions at the -1.2 locus and one susceptible control (‘Santa Clara’) were used in the present study. Significant dosage effects of -1.2 alleles in reducing the reproduction factors (RF) were observed, but restricted to the avirulent Meloidogyne populations. Homozygous resistant (-1.2/-1.2) cultivars, except TD1, prevented reproduction of almost avirulent Meloidogyne spp. populations in contrast with the heterozygous allele combination (-1.2/-1.2), which allowed a certain level of nematode reproduction. The efficiency and durability of the -1.2 gene depend on its proper management under commercial field conditions. Heterozygous (-1.2/-1.2) plants will increase the population of Meloidogyne spp., with no drastic reduction as occurring in the case of homozygous resistant, and they allow a small reproduction of more adapted sub-populations of the nematode, which might increase over time. Therefore, our results strongly indicated that the employment (whenever possible) of hybrids carrying the double dosage of the -1.2 gene would reduce the potential of high nematode populations in plants with this allelic configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nematology
Nematology 生物-动物学
CiteScore
2.60
自引率
33.30%
发文量
67
审稿时长
3 months
期刊介绍: Nematology is an international journal for the publication of all aspects of nematological research (with the exception of vertebrate parasitology), from molecular biology to field studies. Papers on nematode parasites of arthropods, and on soil free-living nematodes, and on interactions of these and other organisms, are particularly welcome. Research on fresh water and marine nematodes is also considered when the observations are of more general interest. Nematology publishes full research papers, short communications, Forum articles (which permit an author to express a view on current or fundamental subjects), perspectives on nematology, and reviews of books and other media.
期刊最新文献
Redescription of two species of the genus Tricirronema Siddiqi, 1993 (Rhabditida, Bicirronematidae) from Vietnam, including SEM study for both species Unveiling novel and known Cryptaphelenchus species from China and USA Skrjabinomermis pirnaimi sp. n. (Nematoda: Mermithidae) from Iran: A morphological and molecular phylogenetic study Delving into the diversity of genus Ironus Bastian, 1865 with special reference to Ironus dentifurcatus Argo & Heyns, 1972 (Ironidae: Enoplida), collected from coal mines Description of Longidorus sanlitanensis n. sp. (Dorylaimida: Longidoridae) from the rhizosphere of Melilotoides ruthenica and Chamaerhodos erecta in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1