Lucas Aurélio Stelziner Fischer, J. Foggiatto, P. Marcondes, S. F. Lajarin
{"title":"将增材制造设计 (DFAM) 应用于汽车工业母样的制造","authors":"Lucas Aurélio Stelziner Fischer, J. Foggiatto, P. Marcondes, S. F. Lajarin","doi":"10.1177/09544054241230571","DOIUrl":null,"url":null,"abstract":"In order to supply auto parts to the automotive industry the companies must meet all Advanced Product Quality Planning (APQP) requirements. One of the biggest difficulties in obtaining the approval of the APQP is in the preparation of the “Master Sample,” which will be used for the validation of jigs, production, and dimensional control devices. The procedures for manufacturing Master Samples through conventional manufacturing processes are outdated, slow, and cost-effective, which goes against the concepts of Industry 4.0. Therefore, this work aims to propose a procedure for Design for Additive Manufacturing (DFAM) that analyzes the feasibility and systematizes the manufacture of Master Sample through Additive Manufacturing (AM). Two model parts were submitted to the procedure, manufactured by AM and validated as Master Samples. In this work, a comparative analysis between the parts produced conventionally and those produced by AM showed that the time and costs in order to obtain the Master Samples using the proposed procedure was significantly shorter. The reduction in time to obtain Master Samples speeds up the evaluation and validation of control devices from suppliers, can speed up the acquisition of APQP documentation and reduce the time in the development of the serial parts by manufacturing process. Furthermore, the use of the proposed DFAM procedure is innovative in the context of the automotive industry, as it suggests a change in the production concept and inserts AM as another option in the manufacturing process and not just as a rapid prototyping tool.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design for Additive Manufacturing (DFAM) applied in the manufacture of Master Sample for the automotive industry\",\"authors\":\"Lucas Aurélio Stelziner Fischer, J. Foggiatto, P. Marcondes, S. F. Lajarin\",\"doi\":\"10.1177/09544054241230571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to supply auto parts to the automotive industry the companies must meet all Advanced Product Quality Planning (APQP) requirements. One of the biggest difficulties in obtaining the approval of the APQP is in the preparation of the “Master Sample,” which will be used for the validation of jigs, production, and dimensional control devices. The procedures for manufacturing Master Samples through conventional manufacturing processes are outdated, slow, and cost-effective, which goes against the concepts of Industry 4.0. Therefore, this work aims to propose a procedure for Design for Additive Manufacturing (DFAM) that analyzes the feasibility and systematizes the manufacture of Master Sample through Additive Manufacturing (AM). Two model parts were submitted to the procedure, manufactured by AM and validated as Master Samples. In this work, a comparative analysis between the parts produced conventionally and those produced by AM showed that the time and costs in order to obtain the Master Samples using the proposed procedure was significantly shorter. The reduction in time to obtain Master Samples speeds up the evaluation and validation of control devices from suppliers, can speed up the acquisition of APQP documentation and reduce the time in the development of the serial parts by manufacturing process. Furthermore, the use of the proposed DFAM procedure is innovative in the context of the automotive industry, as it suggests a change in the production concept and inserts AM as another option in the manufacturing process and not just as a rapid prototyping tool.\",\"PeriodicalId\":20663,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544054241230571\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054241230571","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
摘要
为了向汽车行业提供汽车零部件,企业必须满足所有先进产品质量计划(APQP)的要求。获得 APQP 批准的最大困难之一是准备 "主样本",用于验证夹具、生产和尺寸控制装置。通过传统制造流程制造主样本的程序过时、缓慢且成本效益低,与工业 4.0 的理念背道而驰。因此,这项工作旨在提出一种增材制造设计(DFAM)程序,分析通过增材制造(AM)制造主样本的可行性并使之系统化。两个模型零件被提交给该程序,通过增材制造进行制造,并作为主样本进行验证。在这项工作中,对传统生产的零件和 AM 生产的零件进行的比较分析表明,使用建议的程序获得主样本所需的时间和成本大大缩短。主样本获取时间的缩短加快了对供应商提供的控制设备的评估和验证,可以加快 APQP 文件的获取,并缩短了按制造流程开发系列零件的时间。此外,所建议的 DFAM 程序的使用在汽车行业具有创新性,因为它建议改变生产概念,将 AM 作为制造过程中的另一种选择,而不仅仅是快速原型工具。
Design for Additive Manufacturing (DFAM) applied in the manufacture of Master Sample for the automotive industry
In order to supply auto parts to the automotive industry the companies must meet all Advanced Product Quality Planning (APQP) requirements. One of the biggest difficulties in obtaining the approval of the APQP is in the preparation of the “Master Sample,” which will be used for the validation of jigs, production, and dimensional control devices. The procedures for manufacturing Master Samples through conventional manufacturing processes are outdated, slow, and cost-effective, which goes against the concepts of Industry 4.0. Therefore, this work aims to propose a procedure for Design for Additive Manufacturing (DFAM) that analyzes the feasibility and systematizes the manufacture of Master Sample through Additive Manufacturing (AM). Two model parts were submitted to the procedure, manufactured by AM and validated as Master Samples. In this work, a comparative analysis between the parts produced conventionally and those produced by AM showed that the time and costs in order to obtain the Master Samples using the proposed procedure was significantly shorter. The reduction in time to obtain Master Samples speeds up the evaluation and validation of control devices from suppliers, can speed up the acquisition of APQP documentation and reduce the time in the development of the serial parts by manufacturing process. Furthermore, the use of the proposed DFAM procedure is innovative in the context of the automotive industry, as it suggests a change in the production concept and inserts AM as another option in the manufacturing process and not just as a rapid prototyping tool.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.