A. Pascual, J. Acero, Alexis A. Narvaez, C. Carretero
{"title":"应用于家用感应加热的低居里温度材料的磁非线性研究","authors":"A. Pascual, J. Acero, Alexis A. Narvaez, C. Carretero","doi":"10.3233/jae-230166","DOIUrl":null,"url":null,"abstract":"The analysis of the magnetic properties of alloys with low Curie temperature used in domestic induction heating is presented. These alloys allow the development of cookware with additional benefits with respect to regular cookware oriented to improve temperature control and the user’s safety. Firstly, an experimental method to characterize the magnetic permeability with respect to the magnetic field strength and temperature in the material is presented. Secondly, a finite element simulation method is proposed which, considering the previous characterization, allows the calculation of the electrical equivalent of an inductor-load system as a function of temperature and magnetic field. This method makes possible the application of finite element simulation in the frequency domain with nonlinear materials, which is of interest for the design of electronics associated with domestic applications of induction heating. Simulation results are experimentally verified with various ferromagnetic alloys with low Curie temperature at different power, temperature, and operating frequency ranges.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of magnetic nonlinearities in materials with low Curie temperature applied to domestic induction heating\",\"authors\":\"A. Pascual, J. Acero, Alexis A. Narvaez, C. Carretero\",\"doi\":\"10.3233/jae-230166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analysis of the magnetic properties of alloys with low Curie temperature used in domestic induction heating is presented. These alloys allow the development of cookware with additional benefits with respect to regular cookware oriented to improve temperature control and the user’s safety. Firstly, an experimental method to characterize the magnetic permeability with respect to the magnetic field strength and temperature in the material is presented. Secondly, a finite element simulation method is proposed which, considering the previous characterization, allows the calculation of the electrical equivalent of an inductor-load system as a function of temperature and magnetic field. This method makes possible the application of finite element simulation in the frequency domain with nonlinear materials, which is of interest for the design of electronics associated with domestic applications of induction heating. Simulation results are experimentally verified with various ferromagnetic alloys with low Curie temperature at different power, temperature, and operating frequency ranges.\",\"PeriodicalId\":50340,\"journal\":{\"name\":\"International Journal of Applied Electromagnetics and Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Electromagnetics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/jae-230166\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230166","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Study of magnetic nonlinearities in materials with low Curie temperature applied to domestic induction heating
The analysis of the magnetic properties of alloys with low Curie temperature used in domestic induction heating is presented. These alloys allow the development of cookware with additional benefits with respect to regular cookware oriented to improve temperature control and the user’s safety. Firstly, an experimental method to characterize the magnetic permeability with respect to the magnetic field strength and temperature in the material is presented. Secondly, a finite element simulation method is proposed which, considering the previous characterization, allows the calculation of the electrical equivalent of an inductor-load system as a function of temperature and magnetic field. This method makes possible the application of finite element simulation in the frequency domain with nonlinear materials, which is of interest for the design of electronics associated with domestic applications of induction heating. Simulation results are experimentally verified with various ferromagnetic alloys with low Curie temperature at different power, temperature, and operating frequency ranges.
期刊介绍:
The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are:
Physics and mechanics of electromagnetic materials and devices
Computational electromagnetics in materials and devices
Applications of electromagnetic fields and materials
The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics.
The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.