{"title":"预测孔隙约束下氢在水中的溶解度将增加十倍","authors":"Siqin Yu, Ruyi Zheng, Qinjun Kang, Mohamed Mehana","doi":"10.1007/s10311-024-01698-3","DOIUrl":null,"url":null,"abstract":"<div><p>Underground hydrogen storage in geological formations has gained interest as a potential solution for the global energy transition. The change of hydrogen solubility in underground confinement is a key challenge for safety and efficiency, yet there is few knowledge on hydrogen solubility under nanoconfinement in clays. Here we used molecular dynamic simulations to study hydrogen solubility in water at realistic storage conditions under the confinement of kaolinite. We find a solubility enhancement of tenfold under nanoscale confinement compared with that in the bulk for both hydrophobic and hydrophilic systems. Mechanisms driving this oversolubility are discussed.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 3","pages":"945 - 951"},"PeriodicalIF":15.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicted tenfold increase of hydrogen solubility in water under pore confinement\",\"authors\":\"Siqin Yu, Ruyi Zheng, Qinjun Kang, Mohamed Mehana\",\"doi\":\"10.1007/s10311-024-01698-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Underground hydrogen storage in geological formations has gained interest as a potential solution for the global energy transition. The change of hydrogen solubility in underground confinement is a key challenge for safety and efficiency, yet there is few knowledge on hydrogen solubility under nanoconfinement in clays. Here we used molecular dynamic simulations to study hydrogen solubility in water at realistic storage conditions under the confinement of kaolinite. We find a solubility enhancement of tenfold under nanoscale confinement compared with that in the bulk for both hydrophobic and hydrophilic systems. Mechanisms driving this oversolubility are discussed.</p></div>\",\"PeriodicalId\":541,\"journal\":{\"name\":\"Environmental Chemistry Letters\",\"volume\":\"22 3\",\"pages\":\"945 - 951\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10311-024-01698-3\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-024-01698-3","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Predicted tenfold increase of hydrogen solubility in water under pore confinement
Underground hydrogen storage in geological formations has gained interest as a potential solution for the global energy transition. The change of hydrogen solubility in underground confinement is a key challenge for safety and efficiency, yet there is few knowledge on hydrogen solubility under nanoconfinement in clays. Here we used molecular dynamic simulations to study hydrogen solubility in water at realistic storage conditions under the confinement of kaolinite. We find a solubility enhancement of tenfold under nanoscale confinement compared with that in the bulk for both hydrophobic and hydrophilic systems. Mechanisms driving this oversolubility are discussed.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.