用废羽毛制备梯度吸音复合材料及其性能

Lihua Lyu, Jiaxin Pan, Jing Lu, Xing-lin Zhou, Yuan Gao
{"title":"用废羽毛制备梯度吸音复合材料及其性能","authors":"Lihua Lyu, Jiaxin Pan, Jing Lu, Xing-lin Zhou, Yuan Gao","doi":"10.1177/24723444231215447","DOIUrl":null,"url":null,"abstract":"To make full use of waste feather resources, waste feather fiber/polybutanediol succinate gradient sound-absorbing composites were prepared by a hot-pressing process with waste feather fiber as a reinforcing material and polybutanediol succinate as a matrix material. It can be applied to construction and other fields. The influence of gradient waste feather fiber mass fraction, gradient material density, and gradient material thickness on the sound-absorbing performance was studied, and the sound-absorbing mechanism of the material was analyzed. To determine the average sound-absorbing coefficient, maximum absorbing coefficient, and noise reduction coefficient as the evaluation index, the gradient sound-absorbing composites with waste feathers were compared with market common porous sound-absorbing materials with polyester fiber and wool fiber. The maximum sound-absorbing coefficient of the gradient sound-absorbing composites with waste feathers was 0.860; the average sound-absorbing coefficient was 0.408; the noise reduction coefficient was 0.393; and the noise reduction grade was IV. The sound-absorbing band was wide, and gradient sound-absorbing composites with waste feathers can be applied over a wide range.","PeriodicalId":502144,"journal":{"name":"AATCC Journal of Research","volume":"44 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and Properties of Gradient Sound-Absorbing Composites with Waste Feathers\",\"authors\":\"Lihua Lyu, Jiaxin Pan, Jing Lu, Xing-lin Zhou, Yuan Gao\",\"doi\":\"10.1177/24723444231215447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To make full use of waste feather resources, waste feather fiber/polybutanediol succinate gradient sound-absorbing composites were prepared by a hot-pressing process with waste feather fiber as a reinforcing material and polybutanediol succinate as a matrix material. It can be applied to construction and other fields. The influence of gradient waste feather fiber mass fraction, gradient material density, and gradient material thickness on the sound-absorbing performance was studied, and the sound-absorbing mechanism of the material was analyzed. To determine the average sound-absorbing coefficient, maximum absorbing coefficient, and noise reduction coefficient as the evaluation index, the gradient sound-absorbing composites with waste feathers were compared with market common porous sound-absorbing materials with polyester fiber and wool fiber. The maximum sound-absorbing coefficient of the gradient sound-absorbing composites with waste feathers was 0.860; the average sound-absorbing coefficient was 0.408; the noise reduction coefficient was 0.393; and the noise reduction grade was IV. The sound-absorbing band was wide, and gradient sound-absorbing composites with waste feathers can be applied over a wide range.\",\"PeriodicalId\":502144,\"journal\":{\"name\":\"AATCC Journal of Research\",\"volume\":\"44 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AATCC Journal of Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/24723444231215447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AATCC Journal of Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/24723444231215447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为充分利用废弃羽毛资源,以废弃羽毛纤维为增强材料,聚丁二醇琥珀酸酯为基体材料,采用热压工艺制备了废弃羽毛纤维/聚丁二醇琥珀酸酯梯度吸声复合材料。该材料可应用于建筑等领域。研究了梯度废羽毛纤维质量分数、梯度材料密度和梯度材料厚度对吸声性能的影响,并分析了材料的吸声机理。以平均吸声系数、最大吸声系数和降噪系数为评价指标,将废羽毛梯度吸声复合材料与市场上常见的聚酯纤维和羊毛纤维多孔吸声材料进行了比较。废羽毛梯度吸声复合材料的最大吸声系数为 0.860,平均吸声系数为 0.408,降噪系数为 0.393,降噪等级为 IV 级。吸声频带较宽,废羽毛梯度吸声复合材料的应用范围较广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation and Properties of Gradient Sound-Absorbing Composites with Waste Feathers
To make full use of waste feather resources, waste feather fiber/polybutanediol succinate gradient sound-absorbing composites were prepared by a hot-pressing process with waste feather fiber as a reinforcing material and polybutanediol succinate as a matrix material. It can be applied to construction and other fields. The influence of gradient waste feather fiber mass fraction, gradient material density, and gradient material thickness on the sound-absorbing performance was studied, and the sound-absorbing mechanism of the material was analyzed. To determine the average sound-absorbing coefficient, maximum absorbing coefficient, and noise reduction coefficient as the evaluation index, the gradient sound-absorbing composites with waste feathers were compared with market common porous sound-absorbing materials with polyester fiber and wool fiber. The maximum sound-absorbing coefficient of the gradient sound-absorbing composites with waste feathers was 0.860; the average sound-absorbing coefficient was 0.408; the noise reduction coefficient was 0.393; and the noise reduction grade was IV. The sound-absorbing band was wide, and gradient sound-absorbing composites with waste feathers can be applied over a wide range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Durable Water-Repellent Finishing in Thermal Liner on Firefighter Heat Stress Cellulose nanofiber as mask/personal protective equipment surface agent for enhanced anti-bacterial performance Remediation of Per- and Polyfluoroalkyl Substances in Nonwoven Production and Paper Sectors: A Brief Review Nigella sativa Embedded Co-axial Electrospun PVA–Collagen Composite Nanofibrous Membrane for Biomedical Applications Development of Partition-Designed Outdoor Workwear with Optimal Fabric Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1