推进激光微推进:源自 MOF 的高性能碳包封纳米金属复合材料

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2024-04-03 DOI:10.1016/j.matt.2024.01.024
Senlin Rao , Wendi Yi , Jun Yuan , Shuai Wang , Haoqing Jiang , Gary J. Cheng
{"title":"推进激光微推进:源自 MOF 的高性能碳包封纳米金属复合材料","authors":"Senlin Rao ,&nbsp;Wendi Yi ,&nbsp;Jun Yuan ,&nbsp;Shuai Wang ,&nbsp;Haoqing Jiang ,&nbsp;Gary J. Cheng","doi":"10.1016/j.matt.2024.01.024","DOIUrl":null,"url":null,"abstract":"<div><p>Laser micropropulsion (LMP) is a promising power system for micro-nano satellites. However, current propellants lack enhanced micropropulsion performance and extended service life. To address these challenges, we introduce metal-organic-frameworks (MOFs)-derived Carbon-encapsulated-Nano-Metal Composite (CNMC) through <em>in situ</em> thermal decomposition. CNMC materials combine MOFs' large surface area and porous structure with the benefits of lightweight carbon-based materials. By manipulating the synthesis condition, uniform and highly dense nanoparticles of sizes around 35–121 nm can be achieved. The experimental and numerical studies reveal effective tailoring of LMP performance by adjusting nanoparticle size and metal concentration. Remarkably, CNMC with about 71 nm Cu nanoparticles at 35.3 wt. % exhibits exceptional LMP performance, with 95.02 μN/μg impulse thrust per mass, 42.42% ablated efficiency, and 969.58 s specific impulse. This work provides valuable insights into rational nanoparticle design in carbon-based materials, opening broad applications in LMP technology. Addressing current propellant limitations, this research advances micropropulsion, benefiting future space exploration.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing laser micropropulsion: High performance with MOF-derived carbon-encapsulated-nano-metal composites\",\"authors\":\"Senlin Rao ,&nbsp;Wendi Yi ,&nbsp;Jun Yuan ,&nbsp;Shuai Wang ,&nbsp;Haoqing Jiang ,&nbsp;Gary J. Cheng\",\"doi\":\"10.1016/j.matt.2024.01.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Laser micropropulsion (LMP) is a promising power system for micro-nano satellites. However, current propellants lack enhanced micropropulsion performance and extended service life. To address these challenges, we introduce metal-organic-frameworks (MOFs)-derived Carbon-encapsulated-Nano-Metal Composite (CNMC) through <em>in situ</em> thermal decomposition. CNMC materials combine MOFs' large surface area and porous structure with the benefits of lightweight carbon-based materials. By manipulating the synthesis condition, uniform and highly dense nanoparticles of sizes around 35–121 nm can be achieved. The experimental and numerical studies reveal effective tailoring of LMP performance by adjusting nanoparticle size and metal concentration. Remarkably, CNMC with about 71 nm Cu nanoparticles at 35.3 wt. % exhibits exceptional LMP performance, with 95.02 μN/μg impulse thrust per mass, 42.42% ablated efficiency, and 969.58 s specific impulse. This work provides valuable insights into rational nanoparticle design in carbon-based materials, opening broad applications in LMP technology. Addressing current propellant limitations, this research advances micropropulsion, benefiting future space exploration.</p></div>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590238524000249\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524000249","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

激光微推进(LMP)是微纳卫星的一种前景广阔的动力系统。然而,目前的推进剂缺乏更强的微推进性能和更长的使用寿命。为了应对这些挑战,我们通过原位热分解引入了金属有机框架(MOFs)衍生的碳包封纳米金属复合材料(CNMC)。CNMC 材料将 MOFs 的大表面积和多孔结构与轻质碳基材料的优点结合在一起。通过调节合成条件,可以获得大小约为 35-121 纳米的均匀且高密度的纳米颗粒。实验和数值研究表明,通过调整纳米颗粒尺寸和金属浓度,可以有效地定制 LMP 性能。值得注意的是,在 35.3 重量百分比的 CNMC 中含有约 71 nm 的铜纳米粒子,表现出卓越的 LMP 性能,单位质量脉冲推力为 95.02 μN/μg,烧蚀效率为 42.42%,比脉冲为 969.58 s。这项工作为碳基材料的合理纳米粒子设计提供了宝贵的见解,为 LMP 技术开辟了广阔的应用前景。这项研究解决了当前推进剂的局限性,推动了微推进技术的发展,有利于未来的太空探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancing laser micropropulsion: High performance with MOF-derived carbon-encapsulated-nano-metal composites

Laser micropropulsion (LMP) is a promising power system for micro-nano satellites. However, current propellants lack enhanced micropropulsion performance and extended service life. To address these challenges, we introduce metal-organic-frameworks (MOFs)-derived Carbon-encapsulated-Nano-Metal Composite (CNMC) through in situ thermal decomposition. CNMC materials combine MOFs' large surface area and porous structure with the benefits of lightweight carbon-based materials. By manipulating the synthesis condition, uniform and highly dense nanoparticles of sizes around 35–121 nm can be achieved. The experimental and numerical studies reveal effective tailoring of LMP performance by adjusting nanoparticle size and metal concentration. Remarkably, CNMC with about 71 nm Cu nanoparticles at 35.3 wt. % exhibits exceptional LMP performance, with 95.02 μN/μg impulse thrust per mass, 42.42% ablated efficiency, and 969.58 s specific impulse. This work provides valuable insights into rational nanoparticle design in carbon-based materials, opening broad applications in LMP technology. Addressing current propellant limitations, this research advances micropropulsion, benefiting future space exploration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Sp-hybridized carbon enabled crystal lattice manipulation, pushing the limit of fill factor in β-CsPbI3 perovskite solar cells Overcoming thermal energy storage density limits by liquid water recharge in zeolite-polymer composites Open aerosol microfluidics enable orthogonal compartmentalized functionalization of hydrogel particles Discovery of a novel low-cost medium-entropy stainless steel with exceptional mechanical behavior over a wide temperature range Unlocking lithium ion conduction in lithium metal fluorides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1