{"title":"基于自监督卷积神经网络和并行极限学习机的大数据驱动型植被病虫害区域识别方法","authors":"Bo Jiang , Hao Wang , Hanxu Ma","doi":"10.1016/j.bdr.2024.100444","DOIUrl":null,"url":null,"abstract":"<div><p>A self supervised convolutional neural network-parallel extreme learning machine classification model based on big data is proposed to address the subjectivity and inaccuracy of traditional methods for identifying vegetation pests and diseases that rely on manual observation and empirical judgment. This model is constructed using convolutional neural networks and parallel extreme learning machines, and integrates feature extraction networks with dual attention mechanisms to improve the accuracy of identifying pests and diseases. The model utilized a large amount of big data for training, achieving a recall rate of 98.42 % on multispectral datasets, and an overall classification accuracy of 99.04 %. After optimizing the residual network, the overall accuracy of identifying vegetation pest and disease areas has been further improved to 99.77 %, and the recall rate has also reached 98.91 %. These results indicate that the method proposed in this study has high accuracy and efficiency in the application of big data, can meet the needs of disease and pest identification, and provides effective technical support for the monitoring and prevention of crop diseases and pests, which has important practical significance.</p></div>","PeriodicalId":56017,"journal":{"name":"Big Data Research","volume":"36 ","pages":"Article 100444"},"PeriodicalIF":3.5000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A big data driven vegetation disease and pest region identification method based on self supervised convolutional neural networks and parallel extreme learning machines\",\"authors\":\"Bo Jiang , Hao Wang , Hanxu Ma\",\"doi\":\"10.1016/j.bdr.2024.100444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A self supervised convolutional neural network-parallel extreme learning machine classification model based on big data is proposed to address the subjectivity and inaccuracy of traditional methods for identifying vegetation pests and diseases that rely on manual observation and empirical judgment. This model is constructed using convolutional neural networks and parallel extreme learning machines, and integrates feature extraction networks with dual attention mechanisms to improve the accuracy of identifying pests and diseases. The model utilized a large amount of big data for training, achieving a recall rate of 98.42 % on multispectral datasets, and an overall classification accuracy of 99.04 %. After optimizing the residual network, the overall accuracy of identifying vegetation pest and disease areas has been further improved to 99.77 %, and the recall rate has also reached 98.91 %. These results indicate that the method proposed in this study has high accuracy and efficiency in the application of big data, can meet the needs of disease and pest identification, and provides effective technical support for the monitoring and prevention of crop diseases and pests, which has important practical significance.</p></div>\",\"PeriodicalId\":56017,\"journal\":{\"name\":\"Big Data Research\",\"volume\":\"36 \",\"pages\":\"Article 100444\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214579624000200\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Research","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579624000200","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A big data driven vegetation disease and pest region identification method based on self supervised convolutional neural networks and parallel extreme learning machines
A self supervised convolutional neural network-parallel extreme learning machine classification model based on big data is proposed to address the subjectivity and inaccuracy of traditional methods for identifying vegetation pests and diseases that rely on manual observation and empirical judgment. This model is constructed using convolutional neural networks and parallel extreme learning machines, and integrates feature extraction networks with dual attention mechanisms to improve the accuracy of identifying pests and diseases. The model utilized a large amount of big data for training, achieving a recall rate of 98.42 % on multispectral datasets, and an overall classification accuracy of 99.04 %. After optimizing the residual network, the overall accuracy of identifying vegetation pest and disease areas has been further improved to 99.77 %, and the recall rate has also reached 98.91 %. These results indicate that the method proposed in this study has high accuracy and efficiency in the application of big data, can meet the needs of disease and pest identification, and provides effective technical support for the monitoring and prevention of crop diseases and pests, which has important practical significance.
期刊介绍:
The journal aims to promote and communicate advances in big data research by providing a fast and high quality forum for researchers, practitioners and policy makers from the very many different communities working on, and with, this topic.
The journal will accept papers on foundational aspects in dealing with big data, as well as papers on specific Platforms and Technologies used to deal with big data. To promote Data Science and interdisciplinary collaboration between fields, and to showcase the benefits of data driven research, papers demonstrating applications of big data in domains as diverse as Geoscience, Social Web, Finance, e-Commerce, Health Care, Environment and Climate, Physics and Astronomy, Chemistry, life sciences and drug discovery, digital libraries and scientific publications, security and government will also be considered. Occasionally the journal may publish whitepapers on policies, standards and best practices.