开发用于提取 SARS-CoV-2 和 CDV RNA 的磁性二氧化硅颗粒和内部缓冲液试剂盒

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY Indonesian Journal of Chemistry Pub Date : 2024-02-01 DOI:10.22146/ijc.83804
Ahadi Damar Prasetya, Muflikhah Muflikhah, W. Z. Lubis, Andon Insani, Grace Tjungirai Sulungbudi, M. Mujamilah, Uus Saepulloh
{"title":"开发用于提取 SARS-CoV-2 和 CDV RNA 的磁性二氧化硅颗粒和内部缓冲液试剂盒","authors":"Ahadi Damar Prasetya, Muflikhah Muflikhah, W. Z. Lubis, Andon Insani, Grace Tjungirai Sulungbudi, M. Mujamilah, Uus Saepulloh","doi":"10.22146/ijc.83804","DOIUrl":null,"url":null,"abstract":"Since the end of 2019, COVID-19 pandemic caused by the novel SARS-CoV-2 has become a serious problem for the world. Accurate and rapid techniques in testing and tracing are needed to control the virus spreading. Molecular diagnostics through gene amplification techniques, especially PCR, still become the gold standard for SARS-CoV-2 detection, which requires the first step of RNA extraction and purification. The limitations of commercial RNA extraction-purification kits during the pandemic caused a big problem in testing and tracing, especially for developing countries. A simple RNA extraction-purification kit based on magnetic-silica (MAGSi) beads and non-guanidine in-house buffers for RNA virus extraction-purification has been developed. Two types of MAGSi beads with different magnetic nanoparticles (MNPs) content were synthesized through a modified Stöber’s method using the sonication technique. The PCR result shows that both the MAGSi beads and the buffer can be used as a kit for RNA extraction-purification, tested for SARS-CoV-2 and Canine Distemper Virus. Further study shows that MAGSi-1 has better RNA extraction ability, and a higher concentration of RNA has been extracted. This is likely because of the smaller particle size distribution (50–1,500 nm distribution) and higher magnetization (20.2 emu/g) of MAGSi-1 compared to MAGSi-2 with 100–1,700 nm size distribution and 14.2 emu/g magnetization.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Magnetic-Silica Particles and In-house Buffers Kit for SARS-CoV-2 and CDV RNA Extraction\",\"authors\":\"Ahadi Damar Prasetya, Muflikhah Muflikhah, W. Z. Lubis, Andon Insani, Grace Tjungirai Sulungbudi, M. Mujamilah, Uus Saepulloh\",\"doi\":\"10.22146/ijc.83804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the end of 2019, COVID-19 pandemic caused by the novel SARS-CoV-2 has become a serious problem for the world. Accurate and rapid techniques in testing and tracing are needed to control the virus spreading. Molecular diagnostics through gene amplification techniques, especially PCR, still become the gold standard for SARS-CoV-2 detection, which requires the first step of RNA extraction and purification. The limitations of commercial RNA extraction-purification kits during the pandemic caused a big problem in testing and tracing, especially for developing countries. A simple RNA extraction-purification kit based on magnetic-silica (MAGSi) beads and non-guanidine in-house buffers for RNA virus extraction-purification has been developed. Two types of MAGSi beads with different magnetic nanoparticles (MNPs) content were synthesized through a modified Stöber’s method using the sonication technique. The PCR result shows that both the MAGSi beads and the buffer can be used as a kit for RNA extraction-purification, tested for SARS-CoV-2 and Canine Distemper Virus. Further study shows that MAGSi-1 has better RNA extraction ability, and a higher concentration of RNA has been extracted. This is likely because of the smaller particle size distribution (50–1,500 nm distribution) and higher magnetization (20.2 emu/g) of MAGSi-1 compared to MAGSi-2 with 100–1,700 nm size distribution and 14.2 emu/g magnetization.\",\"PeriodicalId\":13515,\"journal\":{\"name\":\"Indonesian Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijc.83804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.83804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

自 2019 年底以来,由新型 SARS-CoV-2 引起的 COVID-19 大流行已成为全球面临的严重问题。要控制病毒的传播,需要准确、快速的检测和追踪技术。通过基因扩增技术(尤其是 PCR)进行的分子诊断仍是检测 SARS-CoV-2 的黄金标准,但这需要进行第一步的 RNA 提取和纯化。疫情期间,商用 RNA 提取纯化试剂盒的局限性给检测和追踪带来了很大问题,尤其是对发展中国家而言。基于磁性硅胶(MAGSi)微珠和非胍基内部缓冲液的简易 RNA 提取纯化试剂盒已被开发出来,用于 RNA 病毒的提取纯化。通过改良的 Stöber 方法,利用超声技术合成了两种不同磁性纳米粒子(MNPs)含量的 MAGSi 珠。PCR 结果表明,MAGSi 珠和缓冲液均可用作 RNA 提取纯化试剂盒,并对 SARS-CoV-2 和犬瘟热病毒进行了测试。进一步研究表明,MAGSi-1 的 RNA 提取能力更强,提取的 RNA 浓度更高。这可能是因为 MAGSi-1 的粒度分布(50-1500 纳米分布)更小,磁化率(20.2 emu/g)更高,而 MAGSi-2 的粒度分布为 100-1,700 纳米,磁化率为 14.2 emu/g。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of Magnetic-Silica Particles and In-house Buffers Kit for SARS-CoV-2 and CDV RNA Extraction
Since the end of 2019, COVID-19 pandemic caused by the novel SARS-CoV-2 has become a serious problem for the world. Accurate and rapid techniques in testing and tracing are needed to control the virus spreading. Molecular diagnostics through gene amplification techniques, especially PCR, still become the gold standard for SARS-CoV-2 detection, which requires the first step of RNA extraction and purification. The limitations of commercial RNA extraction-purification kits during the pandemic caused a big problem in testing and tracing, especially for developing countries. A simple RNA extraction-purification kit based on magnetic-silica (MAGSi) beads and non-guanidine in-house buffers for RNA virus extraction-purification has been developed. Two types of MAGSi beads with different magnetic nanoparticles (MNPs) content were synthesized through a modified Stöber’s method using the sonication technique. The PCR result shows that both the MAGSi beads and the buffer can be used as a kit for RNA extraction-purification, tested for SARS-CoV-2 and Canine Distemper Virus. Further study shows that MAGSi-1 has better RNA extraction ability, and a higher concentration of RNA has been extracted. This is likely because of the smaller particle size distribution (50–1,500 nm distribution) and higher magnetization (20.2 emu/g) of MAGSi-1 compared to MAGSi-2 with 100–1,700 nm size distribution and 14.2 emu/g magnetization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indonesian Journal of Chemistry
Indonesian Journal of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.30
自引率
11.10%
发文量
106
审稿时长
15 weeks
期刊介绍: Indonesian Journal of Chemistry is a peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry, including educational chemistry, applied chemistry, and chemical engineering.
期刊最新文献
Pseudoternary Phase Diagram and Antibacterial Activity of Microemulsion-Based Citronella Oil Antibacterial Activity and CO2 Capture by Cerium-Copper Mixed Oxides Prepared Using a Co-precipitation Method Surface Properties of Graphene and Graphene Oxide Aerogels for Energy Storage Applications Synthesis, Characterization, and Control Release of Zinc Layered Nitrate Intercalated with Beta-Napthoxyacetic Acid (BNOA) Nanocomposite Evaluation of Lead Ion in the Wastewater of the Lifting and Treatment Stations Using ICP-MS and CPE Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1