图林根州(德国)示范性农业光伏系统的生命周期评估

Christin Busch, Kerstin Wydra
{"title":"图林根州(德国)示范性农业光伏系统的生命周期评估","authors":"Christin Busch, Kerstin Wydra","doi":"10.52825/agripv.v1i.537","DOIUrl":null,"url":null,"abstract":"Agrivoltaic systems create numerous synergies between the aspects of agriculture, climate protection, climate change adaptation, land use and energy. For this reason, the present study examined the environmental impact of this technology using the life cycle assessment approach. Three scenarios were developed: An APV scenario with combined production of electricity and potatoes on one field (scenario 1), a PV scenario with separate production of PV electricity and potatoes (scenario 2) and a scenario in which electricity production is covered by the German electricity mix (scenario 3). All three scenarios showed the same output in energy production (500.13 kWp) and in potato production (307.87 dt/a or 9,236 dt/30 years). The results show that APV systems have similar impacts as open-space PV systems and achieve significantly better performances than the German electricity mix. In half of the impact categories examined, the environmental impacts were caused by potato production, in the other half by electricity production. Due to current developments in system design and solar module development, it can be expected that the life cycle impact of APV systems will continue to improve in the future.","PeriodicalId":517222,"journal":{"name":"AgriVoltaics Conference Proceedings","volume":"60 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Life Cycle Assessment of an Exemplary Agrivoltaic System in Thuringia (Germany)\",\"authors\":\"Christin Busch, Kerstin Wydra\",\"doi\":\"10.52825/agripv.v1i.537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agrivoltaic systems create numerous synergies between the aspects of agriculture, climate protection, climate change adaptation, land use and energy. For this reason, the present study examined the environmental impact of this technology using the life cycle assessment approach. Three scenarios were developed: An APV scenario with combined production of electricity and potatoes on one field (scenario 1), a PV scenario with separate production of PV electricity and potatoes (scenario 2) and a scenario in which electricity production is covered by the German electricity mix (scenario 3). All three scenarios showed the same output in energy production (500.13 kWp) and in potato production (307.87 dt/a or 9,236 dt/30 years). The results show that APV systems have similar impacts as open-space PV systems and achieve significantly better performances than the German electricity mix. In half of the impact categories examined, the environmental impacts were caused by potato production, in the other half by electricity production. Due to current developments in system design and solar module development, it can be expected that the life cycle impact of APV systems will continue to improve in the future.\",\"PeriodicalId\":517222,\"journal\":{\"name\":\"AgriVoltaics Conference Proceedings\",\"volume\":\"60 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AgriVoltaics Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52825/agripv.v1i.537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgriVoltaics Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52825/agripv.v1i.537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

农业光伏系统在农业、气候保护、气候变化适应、土地利用和能源等方面产生了许多协同效应。因此,本研究采用生命周期评估方法研究了该技术对环境的影响。研究制定了三种方案:一种是在一块土地上同时生产电力和马铃薯的 APV 情景(情景 1),一种是分别生产光伏电力和马铃薯的光伏情景(情景 2),一种是电力生产由德国电力组合覆盖的情景(情景 3)。所有三种方案的发电量(500.13 kWp)和马铃薯产量(307.87 dt/a 或 9,236 dt/30年)均相同。结果表明,APV 系统的影响与空地光伏系统相似,其性能明显优于德国的电力组合。在所考察的影响类别中,一半的环境影响是由马铃薯生产造成的,另一半是由电力生产造成的。由于目前在系统设计和太阳能模块开发方面的发展,可以预计,APV 系统的生命周期影响在未来将继续改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Life Cycle Assessment of an Exemplary Agrivoltaic System in Thuringia (Germany)
Agrivoltaic systems create numerous synergies between the aspects of agriculture, climate protection, climate change adaptation, land use and energy. For this reason, the present study examined the environmental impact of this technology using the life cycle assessment approach. Three scenarios were developed: An APV scenario with combined production of electricity and potatoes on one field (scenario 1), a PV scenario with separate production of PV electricity and potatoes (scenario 2) and a scenario in which electricity production is covered by the German electricity mix (scenario 3). All three scenarios showed the same output in energy production (500.13 kWp) and in potato production (307.87 dt/a or 9,236 dt/30 years). The results show that APV systems have similar impacts as open-space PV systems and achieve significantly better performances than the German electricity mix. In half of the impact categories examined, the environmental impacts were caused by potato production, in the other half by electricity production. Due to current developments in system design and solar module development, it can be expected that the life cycle impact of APV systems will continue to improve in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurement of Light Interception by Crops under Solar Panels using PARbars Agrivoltaics in Germany - Status Quo and Future Developments Vertical Agrivoltaics System on Arable Crops in Central France: Feedback of the First Year of Operation New Legal Framework of Agrivoltaics in Germany Modelling Light Interception by Rows of Tall-Growing Crops in an Agri-PV System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1