{"title":"对用于检测家禽中高致病性禽流感病毒的快速免疫细胞化学检验法进行比较研究。","authors":"Levente Szeredi, Ákos Thuma, Éva Gyuris, Krisztina Ursu, Ádám Bálint, Norbert Solymosi","doi":"10.1080/03079457.2024.2320699","DOIUrl":null,"url":null,"abstract":"<p><p>The quantitative real-time reverse polymerase chain reaction (RRT-PCR) is the preferred test method for the diagnosis of avian influenza (AI), but can be performed only in specialized laboratories. Different antigen detection methods for the diagnosis of AI were previously reported to be specific and sensitive in field outbreaks. These tests can be performed in basic countryside labs. Brain smears of domestic birds (<i>n</i> = 105) collected during AI field outbreaks were examined with immunocytochemistry (IC). The results were statistically analysed by comparing IC to brain histology (BH), and immunohistochemistry (IHC), to gross pathological examination (GP) (<i>n</i> = 105), and RRT-PCR (<i>n</i> = 91). AI was diagnosed with RRT-PCR in 66 cases. IC and IHC were positive in 59/66 (90%) and 60/66 (91%) cases, respectively. Lesions suspicious for AI were detected with GP and HP in 66/66 (100%) and 61/66 (92%) cases, respectively. An almost perfect agreement was found between RRT-PCR, IC, IHC, and HP. Substantial agreement was found between IC and GP, between IHC and GP, between HP and GP, and between RRT-PCR and GP. The chromogen-based IC test presented in this study produces durable staining, which can be evaluated using a simple brightfield microscope. The test is rapid (can be completed in 2 h), sensitive (90%), specific (100%), and cost-effective, which makes the method suitable for routine diagnostic tests in AI epidemics.<b>RESEARCH HIGHLIGHTS</b>Avian influenza virus (AIV) antigen detection was examined in field outbreaks.Bird brain smears were tested using immunocytochemistry (IC).IC results strongly correlated with real-time RT-PCR results.The IC method was rapid, specific, sensitive, and cost-effective in AIV field outbreaks.</p>","PeriodicalId":8788,"journal":{"name":"Avian Pathology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative examination of a rapid immunocytochemical test for the detection of highly pathogenic avian influenza virus in domestic birds in field outbreaks.\",\"authors\":\"Levente Szeredi, Ákos Thuma, Éva Gyuris, Krisztina Ursu, Ádám Bálint, Norbert Solymosi\",\"doi\":\"10.1080/03079457.2024.2320699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The quantitative real-time reverse polymerase chain reaction (RRT-PCR) is the preferred test method for the diagnosis of avian influenza (AI), but can be performed only in specialized laboratories. Different antigen detection methods for the diagnosis of AI were previously reported to be specific and sensitive in field outbreaks. These tests can be performed in basic countryside labs. Brain smears of domestic birds (<i>n</i> = 105) collected during AI field outbreaks were examined with immunocytochemistry (IC). The results were statistically analysed by comparing IC to brain histology (BH), and immunohistochemistry (IHC), to gross pathological examination (GP) (<i>n</i> = 105), and RRT-PCR (<i>n</i> = 91). AI was diagnosed with RRT-PCR in 66 cases. IC and IHC were positive in 59/66 (90%) and 60/66 (91%) cases, respectively. Lesions suspicious for AI were detected with GP and HP in 66/66 (100%) and 61/66 (92%) cases, respectively. An almost perfect agreement was found between RRT-PCR, IC, IHC, and HP. Substantial agreement was found between IC and GP, between IHC and GP, between HP and GP, and between RRT-PCR and GP. The chromogen-based IC test presented in this study produces durable staining, which can be evaluated using a simple brightfield microscope. The test is rapid (can be completed in 2 h), sensitive (90%), specific (100%), and cost-effective, which makes the method suitable for routine diagnostic tests in AI epidemics.<b>RESEARCH HIGHLIGHTS</b>Avian influenza virus (AIV) antigen detection was examined in field outbreaks.Bird brain smears were tested using immunocytochemistry (IC).IC results strongly correlated with real-time RT-PCR results.The IC method was rapid, specific, sensitive, and cost-effective in AIV field outbreaks.</p>\",\"PeriodicalId\":8788,\"journal\":{\"name\":\"Avian Pathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Avian Pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/03079457.2024.2320699\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avian Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03079457.2024.2320699","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
定量实时反向聚合酶链反应(RRT-PCR)是目前诊断禽流感的首选检测方法,只能在专业实验室进行。据报道,用于诊断禽流感的不同抗原检测方法在实地疫情中具有特异性和敏感性。这些检测可在简单的国家现场实验室进行。用免疫细胞化学(IC)检查了在禽流感野外暴发期间收集的家禽脑涂片(n = 105)。通过比较免疫细胞化学与脑组织学(BH)、免疫组织化学(IHC)、大体病理检查(GP)(n = 105)和 RRT-PCR(n = 91),对结果进行统计分析。66 例患者通过 RRT-PCR 确诊为 AI。IC和IHC阳性率分别为59/66(90%)和60/66(91%)。66/66(100%)和 61/66(92%)的病例分别通过 GP 和 HP 检测到了疑似 AI 的病变。RRT-PCR、IC、IHC 和 HP 几乎完全一致。IC与GP、IHC与GP、HP与GP以及RRT-PCR与GP之间的结果基本一致。本研究中介绍的基于色原的 IC 检测可产生持久的染色,可使用简单的明视野显微镜进行评估。该检测快速(2 小时内即可完成)、灵敏(90%)、特异(100%)且成本低廉,因此适合在人工智能流行病中进行常规诊断检测。
Comparative examination of a rapid immunocytochemical test for the detection of highly pathogenic avian influenza virus in domestic birds in field outbreaks.
The quantitative real-time reverse polymerase chain reaction (RRT-PCR) is the preferred test method for the diagnosis of avian influenza (AI), but can be performed only in specialized laboratories. Different antigen detection methods for the diagnosis of AI were previously reported to be specific and sensitive in field outbreaks. These tests can be performed in basic countryside labs. Brain smears of domestic birds (n = 105) collected during AI field outbreaks were examined with immunocytochemistry (IC). The results were statistically analysed by comparing IC to brain histology (BH), and immunohistochemistry (IHC), to gross pathological examination (GP) (n = 105), and RRT-PCR (n = 91). AI was diagnosed with RRT-PCR in 66 cases. IC and IHC were positive in 59/66 (90%) and 60/66 (91%) cases, respectively. Lesions suspicious for AI were detected with GP and HP in 66/66 (100%) and 61/66 (92%) cases, respectively. An almost perfect agreement was found between RRT-PCR, IC, IHC, and HP. Substantial agreement was found between IC and GP, between IHC and GP, between HP and GP, and between RRT-PCR and GP. The chromogen-based IC test presented in this study produces durable staining, which can be evaluated using a simple brightfield microscope. The test is rapid (can be completed in 2 h), sensitive (90%), specific (100%), and cost-effective, which makes the method suitable for routine diagnostic tests in AI epidemics.RESEARCH HIGHLIGHTSAvian influenza virus (AIV) antigen detection was examined in field outbreaks.Bird brain smears were tested using immunocytochemistry (IC).IC results strongly correlated with real-time RT-PCR results.The IC method was rapid, specific, sensitive, and cost-effective in AIV field outbreaks.
期刊介绍:
Avian Pathology is the official journal of the World Veterinary Poultry Association and, since its first publication in 1972, has been a leading international journal for poultry disease scientists. It publishes material relevant to the entire field of infectious and non-infectious diseases of poultry and other birds. Accepted manuscripts will contribute novel data of interest to an international readership and will add significantly to knowledge and understanding of diseases, old or new. Subject areas include pathology, diagnosis, detection and characterisation of pathogens, infections of possible zoonotic importance, epidemiology, innate and immune responses, vaccines, gene sequences, genetics in relation to disease and physiological and biochemical changes in response to disease. First and subsequent reports of well-recognized diseases within a country are not acceptable unless they also include substantial new information about the disease or pathogen. Manuscripts on wild or pet birds should describe disease or pathogens in a significant number of birds, recognizing/suggesting serious potential impact on that species or that the disease or pathogen is of demonstrable relevance to poultry. Manuscripts on food-borne microorganisms acquired during or after processing, and those that catalogue the occurrence or properties of microorganisms, are unlikely to be considered for publication in the absence of data linking them to avian disease.