Anastasiia M Isakova, Alexander A Kovalenko, Ekaterina V Skorb, Sergey Shityakov
{"title":"NeuroClick:模仿点击反应生成可渗透血脑屏障的类药物分子的软件。","authors":"Anastasiia M Isakova, Alexander A Kovalenko, Ekaterina V Skorb, Sergey Shityakov","doi":"10.4155/fmc-2023-0017","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Traditional methods for chemical library generation in virtual screening often impose limitations on the accessible chemical space or produce synthetically irrelevant structures. Incorporating common chemical reactions into generative algorithms could offer significant benefits. <b>Materials & methods:</b> In this study, we developed NeuroClick, a graphical user interface software designed to perform in silico azide-alkyne cycloaddition, a widely utilized synthetic approach in modern medicinal chemistry. <b>Results & conclusion:</b> NeuroClick facilitates the generation and filtering of large combinatorial libraries at a remarkable rate of 10,000 molecules per minute. Moreover, the generated products can be filtered to identify subsets of pharmaceutically relevant compounds based on Lipinski's rule of five and blood-brain barrier permeability prediction. We demonstrate the utility of NeuroClick by generating and filtering several thousand molecules for dopamine D3 receptor ligand screening.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"389-398"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NeuroClick: software for mimicking click reaction to generate drug-like molecules permeating the blood-brain barrier.\",\"authors\":\"Anastasiia M Isakova, Alexander A Kovalenko, Ekaterina V Skorb, Sergey Shityakov\",\"doi\":\"10.4155/fmc-2023-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Traditional methods for chemical library generation in virtual screening often impose limitations on the accessible chemical space or produce synthetically irrelevant structures. Incorporating common chemical reactions into generative algorithms could offer significant benefits. <b>Materials & methods:</b> In this study, we developed NeuroClick, a graphical user interface software designed to perform in silico azide-alkyne cycloaddition, a widely utilized synthetic approach in modern medicinal chemistry. <b>Results & conclusion:</b> NeuroClick facilitates the generation and filtering of large combinatorial libraries at a remarkable rate of 10,000 molecules per minute. Moreover, the generated products can be filtered to identify subsets of pharmaceutically relevant compounds based on Lipinski's rule of five and blood-brain barrier permeability prediction. We demonstrate the utility of NeuroClick by generating and filtering several thousand molecules for dopamine D3 receptor ligand screening.</p>\",\"PeriodicalId\":12475,\"journal\":{\"name\":\"Future medicinal chemistry\",\"volume\":\" \",\"pages\":\"389-398\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4155/fmc-2023-0017\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4155/fmc-2023-0017","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
NeuroClick: software for mimicking click reaction to generate drug-like molecules permeating the blood-brain barrier.
Background: Traditional methods for chemical library generation in virtual screening often impose limitations on the accessible chemical space or produce synthetically irrelevant structures. Incorporating common chemical reactions into generative algorithms could offer significant benefits. Materials & methods: In this study, we developed NeuroClick, a graphical user interface software designed to perform in silico azide-alkyne cycloaddition, a widely utilized synthetic approach in modern medicinal chemistry. Results & conclusion: NeuroClick facilitates the generation and filtering of large combinatorial libraries at a remarkable rate of 10,000 molecules per minute. Moreover, the generated products can be filtered to identify subsets of pharmaceutically relevant compounds based on Lipinski's rule of five and blood-brain barrier permeability prediction. We demonstrate the utility of NeuroClick by generating and filtering several thousand molecules for dopamine D3 receptor ligand screening.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.