Álvaro Sánchez, Andrea Arrabal, Magdalena San Román, Juan Díaz-Colunga
{"title":"通过合理的环境操作优化微生物功能。","authors":"Álvaro Sánchez, Andrea Arrabal, Magdalena San Román, Juan Díaz-Colunga","doi":"10.1111/mmi.15236","DOIUrl":null,"url":null,"abstract":"<p><p>Microorganisms play a central role in biotechnology and it is key that we develop strategies to engineer and optimize their functionality. To this end, most efforts have focused on introducing genetic manipulations in microorganisms which are then grown either in monoculture or in mixed-species consortia. An alternative strategy to optimize microbial processes is to rationally engineer the environment in which microbes grow. The microbial environment is multidimensional, including factors such as temperature, pH, salinity, nutrient composition, etc. These environmental factors all influence the growth and phenotypes of microorganisms and they generally \"interact\" with one another, combining their effects in complex, non-additive ways. In this piece, we overview the origins and consequences of these \"interactions\" between environmental factors and discuss how they have been built into statistical, bottom-up predictive models of microbial function to identify optimal environmental conditions for monocultures and microbial consortia. We also overview alternative \"top-down\" approaches, such as genetic algorithms, to finding optimal combinations of environmental factors. By providing a brief summary of the state of this field, we hope to stimulate further work on the rational manipulation and optimization of the microbial environment.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":"294-303"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The optimization of microbial functions through rational environmental manipulations.\",\"authors\":\"Álvaro Sánchez, Andrea Arrabal, Magdalena San Román, Juan Díaz-Colunga\",\"doi\":\"10.1111/mmi.15236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microorganisms play a central role in biotechnology and it is key that we develop strategies to engineer and optimize their functionality. To this end, most efforts have focused on introducing genetic manipulations in microorganisms which are then grown either in monoculture or in mixed-species consortia. An alternative strategy to optimize microbial processes is to rationally engineer the environment in which microbes grow. The microbial environment is multidimensional, including factors such as temperature, pH, salinity, nutrient composition, etc. These environmental factors all influence the growth and phenotypes of microorganisms and they generally \\\"interact\\\" with one another, combining their effects in complex, non-additive ways. In this piece, we overview the origins and consequences of these \\\"interactions\\\" between environmental factors and discuss how they have been built into statistical, bottom-up predictive models of microbial function to identify optimal environmental conditions for monocultures and microbial consortia. We also overview alternative \\\"top-down\\\" approaches, such as genetic algorithms, to finding optimal combinations of environmental factors. By providing a brief summary of the state of this field, we hope to stimulate further work on the rational manipulation and optimization of the microbial environment.</p>\",\"PeriodicalId\":19006,\"journal\":{\"name\":\"Molecular Microbiology\",\"volume\":\" \",\"pages\":\"294-303\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mmi.15236\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15236","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The optimization of microbial functions through rational environmental manipulations.
Microorganisms play a central role in biotechnology and it is key that we develop strategies to engineer and optimize their functionality. To this end, most efforts have focused on introducing genetic manipulations in microorganisms which are then grown either in monoculture or in mixed-species consortia. An alternative strategy to optimize microbial processes is to rationally engineer the environment in which microbes grow. The microbial environment is multidimensional, including factors such as temperature, pH, salinity, nutrient composition, etc. These environmental factors all influence the growth and phenotypes of microorganisms and they generally "interact" with one another, combining their effects in complex, non-additive ways. In this piece, we overview the origins and consequences of these "interactions" between environmental factors and discuss how they have been built into statistical, bottom-up predictive models of microbial function to identify optimal environmental conditions for monocultures and microbial consortia. We also overview alternative "top-down" approaches, such as genetic algorithms, to finding optimal combinations of environmental factors. By providing a brief summary of the state of this field, we hope to stimulate further work on the rational manipulation and optimization of the microbial environment.
期刊介绍:
Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses.
Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.