新生儿呼吸窘迫综合征中脑组织氧饱和度的价值:一项临床研究。

IF 1.8 Q3 MEDICINE, RESEARCH & EXPERIMENTAL European Journal of Translational Myology Pub Date : 2024-02-19 DOI:10.4081/ejtm.2024.11863
Keping Cheng, Huijie Zhu, Zikai Zhou, Weiyuan Chen, Aijuan Yang
{"title":"新生儿呼吸窘迫综合征中脑组织氧饱和度的价值:一项临床研究。","authors":"Keping Cheng, Huijie Zhu, Zikai Zhou, Weiyuan Chen, Aijuan Yang","doi":"10.4081/ejtm.2024.11863","DOIUrl":null,"url":null,"abstract":"<p><p>Neonatal respiratory distress syndrome (NRDS) is one of the major causes of pre-term mortality and morbidity among very-low-birth-weight infants (VLBWI) in low- and middle-income countries (LMIC). Some of the neonates pass away despite admission and care in intensive care units (ICUs). The present clinical trial seeks the application value of elevating oxygen saturation in the brain cells of pre-term neonates born with NRDS. Near-infrared spectroscopy (NIRS) was used to monitor the neonates' microscopic cerebral oxygenation levels do determine hemoglobin concentration in brain tissues, whereas the pulse oximetry was used to measure oxygenation levels among the patients. In statistical analyses, the Analysis of Variance (ANOVA), and descriptive statistics was deployed in the Jupyter Notebook environment using Python language. High saturation of oxygen in the brain tissues result in important biological and physiological processes, including enhanced oxygen supply to cells, reduced severity of NRDS, and balancing oxygen demand and supply. The correlations of oxygen saturation with systemic saturation of oxygen, the saturation of oxygen in brain tissues, the association between brain-specific and systemic saturation, and the impact of these outcomes on clinical practices were deliberated. Also, the pH gas values, the saturation of oxygen in neonates' brain tissues, metabolic acidosis, the effect of acid-base balance and cerebral oxygen supply, and the oxygenation of brain tissues and the pH values emerged as important variables of oxygenation of brain tissues in pre-term neonates. Oxygen saturation in brain cells influence vital physiological and biological processes. Balancing acid-base saturation or levels is needed despite the challenging achievement. Oxygenation of brain tissues improve the brain's overall functioning.</p>","PeriodicalId":46459,"journal":{"name":"European Journal of Translational Myology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017171/pdf/","citationCount":"0","resultStr":"{\"title\":\"Value of brain tissue oxygen saturation in neonatal respiratory distress syndrome: a clinical study.\",\"authors\":\"Keping Cheng, Huijie Zhu, Zikai Zhou, Weiyuan Chen, Aijuan Yang\",\"doi\":\"10.4081/ejtm.2024.11863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neonatal respiratory distress syndrome (NRDS) is one of the major causes of pre-term mortality and morbidity among very-low-birth-weight infants (VLBWI) in low- and middle-income countries (LMIC). Some of the neonates pass away despite admission and care in intensive care units (ICUs). The present clinical trial seeks the application value of elevating oxygen saturation in the brain cells of pre-term neonates born with NRDS. Near-infrared spectroscopy (NIRS) was used to monitor the neonates' microscopic cerebral oxygenation levels do determine hemoglobin concentration in brain tissues, whereas the pulse oximetry was used to measure oxygenation levels among the patients. In statistical analyses, the Analysis of Variance (ANOVA), and descriptive statistics was deployed in the Jupyter Notebook environment using Python language. High saturation of oxygen in the brain tissues result in important biological and physiological processes, including enhanced oxygen supply to cells, reduced severity of NRDS, and balancing oxygen demand and supply. The correlations of oxygen saturation with systemic saturation of oxygen, the saturation of oxygen in brain tissues, the association between brain-specific and systemic saturation, and the impact of these outcomes on clinical practices were deliberated. Also, the pH gas values, the saturation of oxygen in neonates' brain tissues, metabolic acidosis, the effect of acid-base balance and cerebral oxygen supply, and the oxygenation of brain tissues and the pH values emerged as important variables of oxygenation of brain tissues in pre-term neonates. Oxygen saturation in brain cells influence vital physiological and biological processes. Balancing acid-base saturation or levels is needed despite the challenging achievement. Oxygenation of brain tissues improve the brain's overall functioning.</p>\",\"PeriodicalId\":46459,\"journal\":{\"name\":\"European Journal of Translational Myology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017171/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Translational Myology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4081/ejtm.2024.11863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Translational Myology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/ejtm.2024.11863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

新生儿呼吸窘迫综合征(NRDS)是导致中低收入国家超低出生体重儿(VLBWI)早产死亡和发病的主要原因之一。一些新生儿尽管被送入重症监护室(ICU)接受治疗,但仍不幸去世。本临床试验旨在探讨提高患有 NRDS 的早产新生儿脑细胞血氧饱和度的应用价值。近红外光谱(NIRS)用于监测新生儿的微观脑氧合水平,以确定脑组织中的血红蛋白浓度,而脉搏血氧仪则用于测量患者的氧合水平。在统计分析中,使用 Python 语言在 Jupyter Notebook 环境中进行了方差分析(ANOVA)和描述性统计。脑组织中的高氧饱和度会导致重要的生物和生理过程,包括增强对细胞的氧气供应、减轻 NRDS 的严重程度以及平衡氧气需求和供应。会议讨论了血氧饱和度与全身血氧饱和度的相关性、脑组织中的血氧饱和度、脑特异性血氧饱和度与全身血氧饱和度之间的关联以及这些结果对临床实践的影响。此外,气体 pH 值、新生儿脑组织氧饱和度、代谢性酸中毒、酸碱平衡和脑供氧的影响、脑组织氧合以及 pH 值成为早产新生儿脑组织氧合的重要变量。脑细胞中的氧饱和度影响着重要的生理和生物过程。平衡酸碱饱和度或酸碱水平是一项艰巨的任务。脑组织的氧饱和度可改善大脑的整体功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Value of brain tissue oxygen saturation in neonatal respiratory distress syndrome: a clinical study.

Neonatal respiratory distress syndrome (NRDS) is one of the major causes of pre-term mortality and morbidity among very-low-birth-weight infants (VLBWI) in low- and middle-income countries (LMIC). Some of the neonates pass away despite admission and care in intensive care units (ICUs). The present clinical trial seeks the application value of elevating oxygen saturation in the brain cells of pre-term neonates born with NRDS. Near-infrared spectroscopy (NIRS) was used to monitor the neonates' microscopic cerebral oxygenation levels do determine hemoglobin concentration in brain tissues, whereas the pulse oximetry was used to measure oxygenation levels among the patients. In statistical analyses, the Analysis of Variance (ANOVA), and descriptive statistics was deployed in the Jupyter Notebook environment using Python language. High saturation of oxygen in the brain tissues result in important biological and physiological processes, including enhanced oxygen supply to cells, reduced severity of NRDS, and balancing oxygen demand and supply. The correlations of oxygen saturation with systemic saturation of oxygen, the saturation of oxygen in brain tissues, the association between brain-specific and systemic saturation, and the impact of these outcomes on clinical practices were deliberated. Also, the pH gas values, the saturation of oxygen in neonates' brain tissues, metabolic acidosis, the effect of acid-base balance and cerebral oxygen supply, and the oxygenation of brain tissues and the pH values emerged as important variables of oxygenation of brain tissues in pre-term neonates. Oxygen saturation in brain cells influence vital physiological and biological processes. Balancing acid-base saturation or levels is needed despite the challenging achievement. Oxygenation of brain tissues improve the brain's overall functioning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Translational Myology
European Journal of Translational Myology MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
3.30
自引率
27.30%
发文量
74
审稿时长
10 weeks
期刊最新文献
Low level laser therapy and rheumatoid arthritis: a systematic review and meta-analysis study. Vitamin D receptor gene polymorphisms in patients with relapsing multiple sclerosis. Efficacy of electrical stimulation of the zygomaticus muscle in complete facial paralysis: evidence from facial grading and automated image analysis. Deceleration of denervated facial muscle atrophy through functional electrical stimulation: a sonographic quantification in patients with facial nerve paralysis. Obsessive-compulsive disorder, major depressive disorder, and addiction: the vicious relationship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1