SISTR: 在锥形束计算机断层扫描图像上进行窦和下齿槽神经的目标细化分割

Laura Misrachi, Emma Covili, Hippolyte Mayard, Christian Alaka, Jérémy Rousseau, Willy Au
{"title":"SISTR: 在锥形束计算机断层扫描图像上进行窦和下齿槽神经的目标细化分割","authors":"Laura Misrachi, Emma Covili, Hippolyte Mayard, Christian Alaka, Jérémy Rousseau, Willy Au","doi":"10.1101/2024.02.17.24301683","DOIUrl":null,"url":null,"abstract":"In dental implantology, precise delineation of maxillary sinuses and inferior alveolar nerves (IAN) on CBCT scans is essential for implant planning. Addressing the time-consuming manual segmentation, we introduce SISTR (Sinus and IAN Segmentation with Targeted Refinement), a novel deep-learning method for automated, precise segmentation. SISTR employs a two-stage approach: initially, it predicts coarse segmentation and offset maps to anatomical regions, followed by clustering for region centroids identification and targeted cropping for refined segmentation. Developed on the most diverse dataset to date for sinus and IAN segmentation, sourced from 11 dental clinics and 10 manufacturers (358 CBCT volumes for sinus, 499 for IAN), SISTR demonstrates robust generalizability. It achieved strong performance on an external test set, reaching average DICE scores of 96.64% (95.38-97.60) for sinus and 83.43% (80.96-85.63) for IAN, marking a significant 10 percentage point improvement in Dice Score for IAN compared to single-stage methods (p-value < 0.005). Chamfer distances of 0.38 (0.24-0.60) mm for sinus and 0.88 (0.58-1.27) mm for IAN affirm its precision. Efficient in fast and precise segmentation with an inference time of 4 seconds per case, SISTR advances implant planning in digital dentistry.","PeriodicalId":501363,"journal":{"name":"medRxiv - Dentistry and Oral Medicine","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SISTR: Sinus and Inferior alveolar nerve Segmentation with Targeted Refinement on Cone Beam Computed Tomography images\",\"authors\":\"Laura Misrachi, Emma Covili, Hippolyte Mayard, Christian Alaka, Jérémy Rousseau, Willy Au\",\"doi\":\"10.1101/2024.02.17.24301683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In dental implantology, precise delineation of maxillary sinuses and inferior alveolar nerves (IAN) on CBCT scans is essential for implant planning. Addressing the time-consuming manual segmentation, we introduce SISTR (Sinus and IAN Segmentation with Targeted Refinement), a novel deep-learning method for automated, precise segmentation. SISTR employs a two-stage approach: initially, it predicts coarse segmentation and offset maps to anatomical regions, followed by clustering for region centroids identification and targeted cropping for refined segmentation. Developed on the most diverse dataset to date for sinus and IAN segmentation, sourced from 11 dental clinics and 10 manufacturers (358 CBCT volumes for sinus, 499 for IAN), SISTR demonstrates robust generalizability. It achieved strong performance on an external test set, reaching average DICE scores of 96.64% (95.38-97.60) for sinus and 83.43% (80.96-85.63) for IAN, marking a significant 10 percentage point improvement in Dice Score for IAN compared to single-stage methods (p-value < 0.005). Chamfer distances of 0.38 (0.24-0.60) mm for sinus and 0.88 (0.58-1.27) mm for IAN affirm its precision. Efficient in fast and precise segmentation with an inference time of 4 seconds per case, SISTR advances implant planning in digital dentistry.\",\"PeriodicalId\":501363,\"journal\":{\"name\":\"medRxiv - Dentistry and Oral Medicine\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Dentistry and Oral Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.02.17.24301683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Dentistry and Oral Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.02.17.24301683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在牙科种植学中,CBCT 扫描中上颌窦和下齿槽神经(IAN)的精确划分对于种植规划至关重要。为了解决耗时的手动分割问题,我们引入了 SISTR(带目标细化的窦和下牙槽神经分割),这是一种用于自动精确分割的新型深度学习方法。SISTR 采用两阶段方法:首先,预测解剖区域的粗略分割和偏移图,然后进行聚类以识别区域中心点,并有针对性地裁剪以进行精细分割。SISTR 是在迄今为止最多样化的鼻窦和 IAN 分割数据集上开发的,该数据集来自 11 家牙科诊所和 10 家制造商(鼻窦 CBCT 容量 358 个,IAN 容量 499 个)。它在外部测试集上取得了优异的成绩,窦的平均 DICE 得分为 96.64%(95.38-97.60),IAN 的平均 DICE 得分为 83.43%(80.96-85.63),与单级方法相比,IAN 的 DICE 得分显著提高了 10 个百分点(p 值为 0.005)。窦的倒角距离为 0.38(0.24-0.60)毫米,IAN 的倒角距离为 0.88(0.58-1.27)毫米,这肯定了其精确性。SISTR 能够快速、精确地进行分割,每个病例的推理时间仅为 4 秒,它推动了数字牙科中的种植规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SISTR: Sinus and Inferior alveolar nerve Segmentation with Targeted Refinement on Cone Beam Computed Tomography images
In dental implantology, precise delineation of maxillary sinuses and inferior alveolar nerves (IAN) on CBCT scans is essential for implant planning. Addressing the time-consuming manual segmentation, we introduce SISTR (Sinus and IAN Segmentation with Targeted Refinement), a novel deep-learning method for automated, precise segmentation. SISTR employs a two-stage approach: initially, it predicts coarse segmentation and offset maps to anatomical regions, followed by clustering for region centroids identification and targeted cropping for refined segmentation. Developed on the most diverse dataset to date for sinus and IAN segmentation, sourced from 11 dental clinics and 10 manufacturers (358 CBCT volumes for sinus, 499 for IAN), SISTR demonstrates robust generalizability. It achieved strong performance on an external test set, reaching average DICE scores of 96.64% (95.38-97.60) for sinus and 83.43% (80.96-85.63) for IAN, marking a significant 10 percentage point improvement in Dice Score for IAN compared to single-stage methods (p-value < 0.005). Chamfer distances of 0.38 (0.24-0.60) mm for sinus and 0.88 (0.58-1.27) mm for IAN affirm its precision. Efficient in fast and precise segmentation with an inference time of 4 seconds per case, SISTR advances implant planning in digital dentistry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
is metallic perception a taste, an aroma or a flavor? Efficacy of dental flossing and frequency of oral gingivitis in children and adults Understanding Tooth Agenesis: A Multi-omics Insight into MicroRNA Regulation Psychological Contributors to Pain Before, During, and After Endodontic Procedures: A Scoping Review Screening and treatment time in school-based caries prevention: A randomized clinical trial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1