使用贝叶斯参数估计从无黑盒数据中学习更多知识

IF 44.8 1区 物理与天体物理 Q1 PHYSICS, APPLIED Nature Reviews Physics Pub Date : 2024-02-16 DOI:10.1038/s42254-024-00698-0
Rachel C. Kurchin
{"title":"使用贝叶斯参数估计从无黑盒数据中学习更多知识","authors":"Rachel C. Kurchin","doi":"10.1038/s42254-024-00698-0","DOIUrl":null,"url":null,"abstract":"In an age of expensive experiments and hype around new data-driven methods, researchers understandably want to ensure they are gleaning as much insight from their data as possible. Rachel C. Kurchin argues that there is still plenty to be learned from older approaches without turning to black boxes.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 3","pages":"152-154"},"PeriodicalIF":44.8000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Bayesian parameter estimation to learn more from data without black boxes\",\"authors\":\"Rachel C. Kurchin\",\"doi\":\"10.1038/s42254-024-00698-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an age of expensive experiments and hype around new data-driven methods, researchers understandably want to ensure they are gleaning as much insight from their data as possible. Rachel C. Kurchin argues that there is still plenty to be learned from older approaches without turning to black boxes.\",\"PeriodicalId\":19024,\"journal\":{\"name\":\"Nature Reviews Physics\",\"volume\":\"6 3\",\"pages\":\"152-154\"},\"PeriodicalIF\":44.8000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42254-024-00698-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-024-00698-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这个实验昂贵、新数据驱动方法大行其道的时代,研究人员希望从数据中获得尽可能多的洞察力,这是可以理解的。雷切尔-库尔钦(Rachel C. Kurchin)认为,在不使用黑盒的情况下,仍然可以从旧方法中学到很多东西。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Bayesian parameter estimation to learn more from data without black boxes
In an age of expensive experiments and hype around new data-driven methods, researchers understandably want to ensure they are gleaning as much insight from their data as possible. Rachel C. Kurchin argues that there is still plenty to be learned from older approaches without turning to black boxes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
47.80
自引率
0.50%
发文量
122
期刊介绍: Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.
期刊最新文献
Science should inspire, but visions need nuance The AI revolution is always just out of reach The promise and peril of sociotechnical visions of the future Publisher Correction: Rydberg states of alkali atoms in atomic vapour as SI-traceable field probes and communications receivers Physics and the empirical gap of trustworthy AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1