Oskar Ciesielski, Luciano Pirola, Aneta Balcerczyk
{"title":"肽基精氨酸脱氨酶抑制剂通过影响 Akt 信号以及血管生成因子的表达和分泌,降低内皮细胞的血管生成潜能。","authors":"Oskar Ciesielski, Luciano Pirola, Aneta Balcerczyk","doi":"10.33594/000000683","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>Endothelial cells (ECs) play a crucial role in various physiological processes, particularly those related to the cardiovascular system, but also those affecting the entire organism. The biology of ECs is regulated by multiple biochemical stimuli and epigenetic drivers that govern gene expression. We investigated the angiogenic potential of ECs from a protein citrullination perspective, regulated by peptidyl-arginine deiminases (PADs) that modify histone and non-histone proteins. Although the involvement of PADs has been demonstrated in several physiological processes, inflammation-related disorders and cancer, their role in angiogenesis remains unclear.</p><p><strong>Methods: </strong>To elucidate the role of PADs in endothelial angiogenesis, we used two human EC models: primary vein (HUVECs) and microvascular endothelial cells (HMEC-1). PADs activity was inhibited using irreversible inhibitors: BB-Cl-amidine, Cl-amidine and F-amidine. We analyzed all three steps of angiogenesis <i>in vitro</i> : proliferation, migration, and capillary-like tube formation, as well as secretory activities, gene expression and signaling in ECs.</p><p><strong>Results: </strong>All used PAD inhibitors reduced the histone H3 citrullination (H3cit) mark, inhibited endothelial cell migration and capillary-like tube formation, and favored an angiostatic activity in HMEC-1 cells, by increasing PEDF (pigment epithelium-derived factor) and reducing VEGF (vascular endothelial growth factor) mRNA expression and protein secretion. Additionally, BB-Cl-amidine reduced the total activity of MMPs (Matrix metalloproteinases). The observed effects were underlined by the inhibition of Akt phosphorylation.>.</p><p><strong>Conclusion: </strong>Our findings suggest that pharmacological inhibitors of citrullination are promising therapeutic agents to target angiogenesis.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 1","pages":"63-82"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peptidylarginine Deiminases Inhibitors Decrease Endothelial Cells Angiogenic Potential by Affecting Akt Signaling and the Expression and Secretion of Angiogenic Factors.\",\"authors\":\"Oskar Ciesielski, Luciano Pirola, Aneta Balcerczyk\",\"doi\":\"10.33594/000000683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aims: </strong>Endothelial cells (ECs) play a crucial role in various physiological processes, particularly those related to the cardiovascular system, but also those affecting the entire organism. The biology of ECs is regulated by multiple biochemical stimuli and epigenetic drivers that govern gene expression. We investigated the angiogenic potential of ECs from a protein citrullination perspective, regulated by peptidyl-arginine deiminases (PADs) that modify histone and non-histone proteins. Although the involvement of PADs has been demonstrated in several physiological processes, inflammation-related disorders and cancer, their role in angiogenesis remains unclear.</p><p><strong>Methods: </strong>To elucidate the role of PADs in endothelial angiogenesis, we used two human EC models: primary vein (HUVECs) and microvascular endothelial cells (HMEC-1). PADs activity was inhibited using irreversible inhibitors: BB-Cl-amidine, Cl-amidine and F-amidine. We analyzed all three steps of angiogenesis <i>in vitro</i> : proliferation, migration, and capillary-like tube formation, as well as secretory activities, gene expression and signaling in ECs.</p><p><strong>Results: </strong>All used PAD inhibitors reduced the histone H3 citrullination (H3cit) mark, inhibited endothelial cell migration and capillary-like tube formation, and favored an angiostatic activity in HMEC-1 cells, by increasing PEDF (pigment epithelium-derived factor) and reducing VEGF (vascular endothelial growth factor) mRNA expression and protein secretion. Additionally, BB-Cl-amidine reduced the total activity of MMPs (Matrix metalloproteinases). The observed effects were underlined by the inhibition of Akt phosphorylation.>.</p><p><strong>Conclusion: </strong>Our findings suggest that pharmacological inhibitors of citrullination are promising therapeutic agents to target angiogenesis.</p>\",\"PeriodicalId\":9845,\"journal\":{\"name\":\"Cellular Physiology and Biochemistry\",\"volume\":\"58 1\",\"pages\":\"63-82\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Physiology and Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33594/000000683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33594/000000683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Peptidylarginine Deiminases Inhibitors Decrease Endothelial Cells Angiogenic Potential by Affecting Akt Signaling and the Expression and Secretion of Angiogenic Factors.
Background/aims: Endothelial cells (ECs) play a crucial role in various physiological processes, particularly those related to the cardiovascular system, but also those affecting the entire organism. The biology of ECs is regulated by multiple biochemical stimuli and epigenetic drivers that govern gene expression. We investigated the angiogenic potential of ECs from a protein citrullination perspective, regulated by peptidyl-arginine deiminases (PADs) that modify histone and non-histone proteins. Although the involvement of PADs has been demonstrated in several physiological processes, inflammation-related disorders and cancer, their role in angiogenesis remains unclear.
Methods: To elucidate the role of PADs in endothelial angiogenesis, we used two human EC models: primary vein (HUVECs) and microvascular endothelial cells (HMEC-1). PADs activity was inhibited using irreversible inhibitors: BB-Cl-amidine, Cl-amidine and F-amidine. We analyzed all three steps of angiogenesis in vitro : proliferation, migration, and capillary-like tube formation, as well as secretory activities, gene expression and signaling in ECs.
Results: All used PAD inhibitors reduced the histone H3 citrullination (H3cit) mark, inhibited endothelial cell migration and capillary-like tube formation, and favored an angiostatic activity in HMEC-1 cells, by increasing PEDF (pigment epithelium-derived factor) and reducing VEGF (vascular endothelial growth factor) mRNA expression and protein secretion. Additionally, BB-Cl-amidine reduced the total activity of MMPs (Matrix metalloproteinases). The observed effects were underlined by the inhibition of Akt phosphorylation.>.
Conclusion: Our findings suggest that pharmacological inhibitors of citrullination are promising therapeutic agents to target angiogenesis.
期刊介绍:
Cellular Physiology and Biochemistry is a multidisciplinary scientific forum dedicated to advancing the frontiers of basic cellular research. It addresses scientists from both the physiological and biochemical disciplines as well as related fields such as genetics, molecular biology, pathophysiology, pathobiochemistry and cellular toxicology & pharmacology. Original papers and reviews on the mechanisms of intracellular transmission, cellular metabolism, cell growth, differentiation and death, ion channels and carriers, and the maintenance, regulation and disturbances of cell volume are presented. Appearing monthly under peer review, Cellular Physiology and Biochemistry takes an active role in the concerted international effort to unravel the mechanisms of cellular function.