开发同时测定芹菜素和没食子酸的快速分析方法:纳米脂质体制剂的验证与应用。

IF 2.4 4区 医学 Q3 CHEMISTRY, MEDICINAL Drug Development and Industrial Pharmacy Pub Date : 2024-03-01 Epub Date: 2024-02-28 DOI:10.1080/03639045.2024.2318386
Ahmed Gouda, Omar S Sakr, Maha Nasr, Omaima A Sammour
{"title":"开发同时测定芹菜素和没食子酸的快速分析方法:纳米脂质体制剂的验证与应用。","authors":"Ahmed Gouda, Omar S Sakr, Maha Nasr, Omaima A Sammour","doi":"10.1080/03639045.2024.2318386","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Apigenin and gallic acid are natural compounds that are useful as antioxidant, anti-inflammatory and anticancer agents, especially when used together in combination. Therefore, the development and validation of a simultaneous method of analysis for both compounds in pure form and when encapsulated in an advanced delivery system such as liposomes would be useful.</p><p><strong>Methods: </strong>Analysis was performed using C18 column under isocratic conditions. The mobile phase was acetonitrile: water containing 0.2% orthophosphoric acid at a ratio of 67:33, flow rate 1 ml/min, and detection wavelength 334 nm for apigenin and 271 nm for gallic acid.</p><p><strong>Results: </strong>The assay method was linear at the concentration range (5-600 µg/mL) with R<sup>2</sup> of 1 for both drugs. The method was also shown to be precise and robust with RSD less than 2% with LOD (0.12, 0.1 µg/mL) and LOQ (4.14, 3.58 µg/mL) for apigenin and gallic acid respectively. The method was also applicable for the determination of the entrapment efficiency of both drugs when co-loaded in a nanoliposomal formulation.</p><p><strong>Conclusion: </strong>The described HPLC method was shown to be suitable, sensitive, and reproducible for the simultaneous identification and quantification of apigenin and gallic acid. The analytical results were accurate and precise, with good recovery, low limit of detection, and the chromatographic assay was accomplished in less than 3 min, suggesting the suitability of the method for routine analysis of both drugs in pharmaceutical formulations.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing a rapid analytical method for simultaneous determination of apigenin and gallic acid: validation and application in a nanoliposomal formulation.\",\"authors\":\"Ahmed Gouda, Omar S Sakr, Maha Nasr, Omaima A Sammour\",\"doi\":\"10.1080/03639045.2024.2318386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Apigenin and gallic acid are natural compounds that are useful as antioxidant, anti-inflammatory and anticancer agents, especially when used together in combination. Therefore, the development and validation of a simultaneous method of analysis for both compounds in pure form and when encapsulated in an advanced delivery system such as liposomes would be useful.</p><p><strong>Methods: </strong>Analysis was performed using C18 column under isocratic conditions. The mobile phase was acetonitrile: water containing 0.2% orthophosphoric acid at a ratio of 67:33, flow rate 1 ml/min, and detection wavelength 334 nm for apigenin and 271 nm for gallic acid.</p><p><strong>Results: </strong>The assay method was linear at the concentration range (5-600 µg/mL) with R<sup>2</sup> of 1 for both drugs. The method was also shown to be precise and robust with RSD less than 2% with LOD (0.12, 0.1 µg/mL) and LOQ (4.14, 3.58 µg/mL) for apigenin and gallic acid respectively. The method was also applicable for the determination of the entrapment efficiency of both drugs when co-loaded in a nanoliposomal formulation.</p><p><strong>Conclusion: </strong>The described HPLC method was shown to be suitable, sensitive, and reproducible for the simultaneous identification and quantification of apigenin and gallic acid. The analytical results were accurate and precise, with good recovery, low limit of detection, and the chromatographic assay was accomplished in less than 3 min, suggesting the suitability of the method for routine analysis of both drugs in pharmaceutical formulations.</p>\",\"PeriodicalId\":11263,\"journal\":{\"name\":\"Drug Development and Industrial Pharmacy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Development and Industrial Pharmacy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03639045.2024.2318386\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2024.2318386","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:芹菜苷和没食子酸是天然化合物,可作为抗氧化剂、消炎剂和抗癌剂,尤其是在联合使用时。因此,开发和验证同时分析这两种化合物的纯品和封装在脂质体等先进给药系统中时的方法将非常有用:分析采用 C18 色谱柱,在等度条件下进行。流动相为乙腈:含 0.2% 正磷酸的水,比例为 67:33,流速为 1 ml/min,芹菜苷的检测波长为 334 nm,没食子酸的检测波长为 271 nm:两种药物在 5-600 µg/mL 浓度范围内线性关系良好,R2 为 1。芹菜苷和没食子酸的检出限(0.12, 0.1 µg/mL)和定量限(4.14, 3.58 µg/mL)分别为 0.12 和 0.1 µg/mL,RSD 小于 2%。该方法还适用于测定纳米脂质体制剂中两种药物的夹带效率:结论:所建立的高效液相色谱法适用于芹菜苷和没食子酸的同时鉴定和定量,灵敏度高,重现性好。分析结果准确、精确,回收率高,检出限低,色谱检测时间小于 3 分钟,表明该方法适用于药物制剂中这两种药物的常规分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developing a rapid analytical method for simultaneous determination of apigenin and gallic acid: validation and application in a nanoliposomal formulation.

Objective: Apigenin and gallic acid are natural compounds that are useful as antioxidant, anti-inflammatory and anticancer agents, especially when used together in combination. Therefore, the development and validation of a simultaneous method of analysis for both compounds in pure form and when encapsulated in an advanced delivery system such as liposomes would be useful.

Methods: Analysis was performed using C18 column under isocratic conditions. The mobile phase was acetonitrile: water containing 0.2% orthophosphoric acid at a ratio of 67:33, flow rate 1 ml/min, and detection wavelength 334 nm for apigenin and 271 nm for gallic acid.

Results: The assay method was linear at the concentration range (5-600 µg/mL) with R2 of 1 for both drugs. The method was also shown to be precise and robust with RSD less than 2% with LOD (0.12, 0.1 µg/mL) and LOQ (4.14, 3.58 µg/mL) for apigenin and gallic acid respectively. The method was also applicable for the determination of the entrapment efficiency of both drugs when co-loaded in a nanoliposomal formulation.

Conclusion: The described HPLC method was shown to be suitable, sensitive, and reproducible for the simultaneous identification and quantification of apigenin and gallic acid. The analytical results were accurate and precise, with good recovery, low limit of detection, and the chromatographic assay was accomplished in less than 3 min, suggesting the suitability of the method for routine analysis of both drugs in pharmaceutical formulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
82
审稿时长
4.5 months
期刊介绍: The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.
期刊最新文献
Correction. TGF-β1 and FOXM1 siRNA co-loaded nanoparticles by Disulfide crosslinked PEG-PDMAEMA for the treatment of triple negative breast cancer and its bone metastases in vitro. Enhancement in the Antibacterial Activity of Rifaximin by Delivery through Gelatin Nanoparticles. In vitro anticancer efficacy of Calendula Officinalis extract-loaded chitosan nanoparticles against gastric and colon cancer cells. Stability-indicating green HPLC method for fixed-dose tablets containing remogliflozin etabonate and teneligliptin: an AQbD approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1