{"title":"将基于机器学习的读取交叉结构-性质关系(RASPR)作为预测建模的新工具:预测染料敏化太阳能电池(DSSC)中某些类别有机染料的功率转换效率(PCE)。","authors":"Souvik Pore, Arkaprava Banerjee, Kunal Roy","doi":"10.1002/minf.202300210","DOIUrl":null,"url":null,"abstract":"<p><p>The application of various in-silico-based approaches for the prediction of various properties of materials has been an effective alternative to experimental methods. Recently, the concepts of Quantitative structure-property relationship (QSPR) and read-across (RA) methods were merged to develop a new emerging chemoinformatic tool: read-across structure-property relationship (RASPR). The RASPR method can be applicable to both large and small datasets as it uses various similarity and error-based measures. It has also been observed that RASPR models tend to have an increased external predictivity compared to the corresponding QSPR models. In this study, we have modeled the power conversion efficiency (PCE) of organic dyes used in dye-sensitized solar cells (DSSCs) by using the quantitative RASPR (q-RASPR) method. We have used relatively larger classes of organic dyes-Phenothiazines (n=207), Porphyrins (n=281), and Triphenylamines (n=229) for the modelling purpose. We have divided each of the datasets into training and test sets in 3 different combinations, and with the training sets we have developed three different QSPR models with structural and physicochemical descriptors and validated them with the corresponding test sets. These corresponding modeled descriptors were used to calculate the RASPR descriptors using a Java-based tool RASAR Descriptor Calculator v2.0 (https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home), and then data fusion was performed by pooling the previously selected structural and physicochemical descriptors with the calculated RASPR descriptors. Further feature selection algorithm was employed to develop the final RASPR PLS models. Here, we also developed different machine learning (ML) models with the descriptors selected in the QSPR PLS and RASPR PLS models, and it was found that models with RASPR descriptors superseded in external predictivity the models with only structural and physicochemical descriptors: RMSEP reduced for phenothiazines from 1.16-1.25 to 1.07-1.18, for porphyrins from 1.60-1.79 to 1.45-1.53, for triphenylamines from 1.27-1.54 to 1.20-1.47.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300210"},"PeriodicalIF":2.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of machine learning-based read-across structure-property relationship (RASPR) as a new tool for predictive modelling: Prediction of power conversion efficiency (PCE) for selected classes of organic dyes in dye-sensitized solar cells (DSSCs).\",\"authors\":\"Souvik Pore, Arkaprava Banerjee, Kunal Roy\",\"doi\":\"10.1002/minf.202300210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The application of various in-silico-based approaches for the prediction of various properties of materials has been an effective alternative to experimental methods. Recently, the concepts of Quantitative structure-property relationship (QSPR) and read-across (RA) methods were merged to develop a new emerging chemoinformatic tool: read-across structure-property relationship (RASPR). The RASPR method can be applicable to both large and small datasets as it uses various similarity and error-based measures. It has also been observed that RASPR models tend to have an increased external predictivity compared to the corresponding QSPR models. In this study, we have modeled the power conversion efficiency (PCE) of organic dyes used in dye-sensitized solar cells (DSSCs) by using the quantitative RASPR (q-RASPR) method. We have used relatively larger classes of organic dyes-Phenothiazines (n=207), Porphyrins (n=281), and Triphenylamines (n=229) for the modelling purpose. We have divided each of the datasets into training and test sets in 3 different combinations, and with the training sets we have developed three different QSPR models with structural and physicochemical descriptors and validated them with the corresponding test sets. These corresponding modeled descriptors were used to calculate the RASPR descriptors using a Java-based tool RASAR Descriptor Calculator v2.0 (https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home), and then data fusion was performed by pooling the previously selected structural and physicochemical descriptors with the calculated RASPR descriptors. Further feature selection algorithm was employed to develop the final RASPR PLS models. Here, we also developed different machine learning (ML) models with the descriptors selected in the QSPR PLS and RASPR PLS models, and it was found that models with RASPR descriptors superseded in external predictivity the models with only structural and physicochemical descriptors: RMSEP reduced for phenothiazines from 1.16-1.25 to 1.07-1.18, for porphyrins from 1.60-1.79 to 1.45-1.53, for triphenylamines from 1.27-1.54 to 1.20-1.47.</p>\",\"PeriodicalId\":18853,\"journal\":{\"name\":\"Molecular Informatics\",\"volume\":\" \",\"pages\":\"e202300210\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/minf.202300210\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202300210","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Application of machine learning-based read-across structure-property relationship (RASPR) as a new tool for predictive modelling: Prediction of power conversion efficiency (PCE) for selected classes of organic dyes in dye-sensitized solar cells (DSSCs).
The application of various in-silico-based approaches for the prediction of various properties of materials has been an effective alternative to experimental methods. Recently, the concepts of Quantitative structure-property relationship (QSPR) and read-across (RA) methods were merged to develop a new emerging chemoinformatic tool: read-across structure-property relationship (RASPR). The RASPR method can be applicable to both large and small datasets as it uses various similarity and error-based measures. It has also been observed that RASPR models tend to have an increased external predictivity compared to the corresponding QSPR models. In this study, we have modeled the power conversion efficiency (PCE) of organic dyes used in dye-sensitized solar cells (DSSCs) by using the quantitative RASPR (q-RASPR) method. We have used relatively larger classes of organic dyes-Phenothiazines (n=207), Porphyrins (n=281), and Triphenylamines (n=229) for the modelling purpose. We have divided each of the datasets into training and test sets in 3 different combinations, and with the training sets we have developed three different QSPR models with structural and physicochemical descriptors and validated them with the corresponding test sets. These corresponding modeled descriptors were used to calculate the RASPR descriptors using a Java-based tool RASAR Descriptor Calculator v2.0 (https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home), and then data fusion was performed by pooling the previously selected structural and physicochemical descriptors with the calculated RASPR descriptors. Further feature selection algorithm was employed to develop the final RASPR PLS models. Here, we also developed different machine learning (ML) models with the descriptors selected in the QSPR PLS and RASPR PLS models, and it was found that models with RASPR descriptors superseded in external predictivity the models with only structural and physicochemical descriptors: RMSEP reduced for phenothiazines from 1.16-1.25 to 1.07-1.18, for porphyrins from 1.60-1.79 to 1.45-1.53, for triphenylamines from 1.27-1.54 to 1.20-1.47.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.