BO-LCNN:基于蝴蝶优化的轻量级卷积神经网络,用于远程数据完整性审计和数据清除模型

IF 1.7 4区 计算机科学 Q3 TELECOMMUNICATIONS Telecommunication Systems Pub Date : 2024-02-19 DOI:10.1007/s11235-023-01096-0
B. Judy Flavia, Balika J. Chelliah
{"title":"BO-LCNN:基于蝴蝶优化的轻量级卷积神经网络,用于远程数据完整性审计和数据清除模型","authors":"B. Judy Flavia, Balika J. Chelliah","doi":"10.1007/s11235-023-01096-0","DOIUrl":null,"url":null,"abstract":"<p>With the increasing use of cloud storage for sensitive and personal information, ensuring data security has become a top priority. It is important to prevent sensitive data from being identified by unauthorized users during the distribution of cloud files. The main aim is to transmit the data in a secured manner without encrypting the entire file. Hence a novel design for remote data integrity auditing and data sanitizing that enables users to access files without revealing sensitive information. Our approach includes identity-based shared data integrity auditing, which is performed using different zero-knowledge proof protocols such as ZK-SNARK and ZK-STARK. We also propose a pinhole-imaging-based learning butterfly optimization algorithm with a lightweight convolutional neural network (PILBOA-LCNN) technique for data sanitization and security. The LCNN is used to identify sensitive terms in the document and safeguard them to maintain confidentiality. In the proposed PILBOA-LCNN technique, key extraction is a critical task during data restoration and sanitization. The PILBOA algorithm is used for key optimization during data sanitization. We evaluate the performance of our proposed model in terms of privacy preservation and document sanitization using the UPC and bus user datasets. The experimentation results revealed that the proposed method enhanced recall, F-measure, and precision scores as 90%, 89%, and 92%. It also has a low computation time of 109.2 s and 113.5 s. Our experimental results demonstrate that our proposed model outperforms existing techniques and offers improved cloud data storage privacy and accessibility.</p>","PeriodicalId":51194,"journal":{"name":"Telecommunication Systems","volume":"39 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BO-LCNN: butterfly optimization based lightweight convolutional neural network for remote data integrity auditing and data sanitizing model\",\"authors\":\"B. Judy Flavia, Balika J. Chelliah\",\"doi\":\"10.1007/s11235-023-01096-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the increasing use of cloud storage for sensitive and personal information, ensuring data security has become a top priority. It is important to prevent sensitive data from being identified by unauthorized users during the distribution of cloud files. The main aim is to transmit the data in a secured manner without encrypting the entire file. Hence a novel design for remote data integrity auditing and data sanitizing that enables users to access files without revealing sensitive information. Our approach includes identity-based shared data integrity auditing, which is performed using different zero-knowledge proof protocols such as ZK-SNARK and ZK-STARK. We also propose a pinhole-imaging-based learning butterfly optimization algorithm with a lightweight convolutional neural network (PILBOA-LCNN) technique for data sanitization and security. The LCNN is used to identify sensitive terms in the document and safeguard them to maintain confidentiality. In the proposed PILBOA-LCNN technique, key extraction is a critical task during data restoration and sanitization. The PILBOA algorithm is used for key optimization during data sanitization. We evaluate the performance of our proposed model in terms of privacy preservation and document sanitization using the UPC and bus user datasets. The experimentation results revealed that the proposed method enhanced recall, F-measure, and precision scores as 90%, 89%, and 92%. It also has a low computation time of 109.2 s and 113.5 s. Our experimental results demonstrate that our proposed model outperforms existing techniques and offers improved cloud data storage privacy and accessibility.</p>\",\"PeriodicalId\":51194,\"journal\":{\"name\":\"Telecommunication Systems\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Telecommunication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11235-023-01096-0\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecommunication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11235-023-01096-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

随着敏感信息和个人信息越来越多地使用云存储,确保数据安全已成为重中之重。在分发云文件时,必须防止敏感数据被未经授权的用户识别。其主要目的是在不加密整个文件的情况下以安全的方式传输数据。因此,我们设计了一种新颖的远程数据完整性审计和数据消毒方法,使用户能够在不泄露敏感信息的情况下访问文件。我们的方法包括基于身份的共享数据完整性审计,该审计使用不同的零知识证明协议(如 ZK-SNARK 和 ZK-STARK)执行。我们还提出了一种基于针孔成像的学习蝴蝶优化算法和轻量级卷积神经网络(PILBOA-LCNN)技术,用于数据清除和安全。LCNN 用于识别文档中的敏感词汇,并保护它们以保持机密性。在拟议的 PILBOA-LCNN 技术中,密钥提取是数据恢复和净化过程中的一项关键任务。PILBOA 算法用于数据清理过程中的密钥优化。我们使用 UPC 和公交用户数据集评估了我们提出的模型在隐私保护和文档净化方面的性能。实验结果表明,所提方法的召回率、F-measure 和精确度分别提高了 90%、89% 和 92%。计算时间也较短,分别为 109.2 秒和 113.5 秒。实验结果表明,我们提出的模型优于现有技术,并改善了云数据存储的隐私性和可访问性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BO-LCNN: butterfly optimization based lightweight convolutional neural network for remote data integrity auditing and data sanitizing model

With the increasing use of cloud storage for sensitive and personal information, ensuring data security has become a top priority. It is important to prevent sensitive data from being identified by unauthorized users during the distribution of cloud files. The main aim is to transmit the data in a secured manner without encrypting the entire file. Hence a novel design for remote data integrity auditing and data sanitizing that enables users to access files without revealing sensitive information. Our approach includes identity-based shared data integrity auditing, which is performed using different zero-knowledge proof protocols such as ZK-SNARK and ZK-STARK. We also propose a pinhole-imaging-based learning butterfly optimization algorithm with a lightweight convolutional neural network (PILBOA-LCNN) technique for data sanitization and security. The LCNN is used to identify sensitive terms in the document and safeguard them to maintain confidentiality. In the proposed PILBOA-LCNN technique, key extraction is a critical task during data restoration and sanitization. The PILBOA algorithm is used for key optimization during data sanitization. We evaluate the performance of our proposed model in terms of privacy preservation and document sanitization using the UPC and bus user datasets. The experimentation results revealed that the proposed method enhanced recall, F-measure, and precision scores as 90%, 89%, and 92%. It also has a low computation time of 109.2 s and 113.5 s. Our experimental results demonstrate that our proposed model outperforms existing techniques and offers improved cloud data storage privacy and accessibility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Telecommunication Systems
Telecommunication Systems 工程技术-电信学
CiteScore
5.40
自引率
8.00%
发文量
105
审稿时长
6.0 months
期刊介绍: Telecommunication Systems is a journal covering all aspects of modeling, analysis, design and management of telecommunication systems. The journal publishes high quality articles dealing with the use of analytic and quantitative tools for the modeling, analysis, design and management of telecommunication systems covering: Performance Evaluation of Wide Area and Local Networks; Network Interconnection; Wire, wireless, Adhoc, mobile networks; Impact of New Services (economic and organizational impact); Fiberoptics and photonic switching; DSL, ADSL, cable TV and their impact; Design and Analysis Issues in Metropolitan Area Networks; Networking Protocols; Dynamics and Capacity Expansion of Telecommunication Systems; Multimedia Based Systems, Their Design Configuration and Impact; Configuration of Distributed Systems; Pricing for Networking and Telecommunication Services; Performance Analysis of Local Area Networks; Distributed Group Decision Support Systems; Configuring Telecommunication Systems with Reliability and Availability; Cost Benefit Analysis and Economic Impact of Telecommunication Systems; Standardization and Regulatory Issues; Security, Privacy and Encryption in Telecommunication Systems; Cellular, Mobile and Satellite Based Systems.
期刊最新文献
Next-cell prediction with LSTM based on vehicle mobility for 5G mc-IoT slices Secure positioning of wireless sensor networks against wormhole attacks Safeguarding the Internet of Health Things: advancements, challenges, and trust-based solution Optimized task offloading for federated learning based on β-skeleton graph in edge computing Noise robust automatic speaker verification systems: review and analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1