{"title":"双螺旋多糖黄原胶在酸性和碱性溶液中的热变性和再变性","authors":"Yasuhiro Matsuda, Ryoga Saiki, Kaede Sato, Atsuya Kashiwagi, Kazuto Yoshiba","doi":"10.1038/s41428-024-00892-y","DOIUrl":null,"url":null,"abstract":"The double helix of a polysaccharide, xanthan was unwound by heating (denaturation) and rewound by cooling (renaturation) in acidic (0.01 M HCl) and basic (0.01 M NaOH) solutions. Circular dichroism spectra of xanthan renatured in the acidic and basic solutions were similar to those of native xanthan, which suggests that the local helical structures of the renatured xanthan were recovered by renaturation. The changes in the molar mass and intrinsic viscosity of xanthan induced by renaturation in the acidic solution can be explained by the renaturation scheme in the neutral solution, as reported previously. (Matsuda et al. Polym. J. 41, 526-532, 2009). Both the molar mass and radius of gyration of xanthan in the basic solution were decreased by denaturation and renaturation, and the molar mass dependence of the radius of gyration was similar to that of native xanthan. This change can be explained by the formation of a hairpin structure during renaturation in the basic solutions. Structural changes induced by thermal denaturation and renaturation of a double-helical polysaccharide xanthan in acidic and basic solutions were investigated mainly by light scattering measurements and circular dichroism spectroscopy. In acidic solution, the renatured components were almost the same as those in native components, while small amounts of aggregates and a hairpin structure were produced via denaturation and renaturation processes. In basic solution, the double helices were dissociated upon heating into the single coils, and high molar mass sample produced a hairpin structure after subsequent renaturation.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"56 6","pages":"629-637"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal denaturation and renaturation of a double-helical polysaccharide xanthan in acidic and basic solutions\",\"authors\":\"Yasuhiro Matsuda, Ryoga Saiki, Kaede Sato, Atsuya Kashiwagi, Kazuto Yoshiba\",\"doi\":\"10.1038/s41428-024-00892-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The double helix of a polysaccharide, xanthan was unwound by heating (denaturation) and rewound by cooling (renaturation) in acidic (0.01 M HCl) and basic (0.01 M NaOH) solutions. Circular dichroism spectra of xanthan renatured in the acidic and basic solutions were similar to those of native xanthan, which suggests that the local helical structures of the renatured xanthan were recovered by renaturation. The changes in the molar mass and intrinsic viscosity of xanthan induced by renaturation in the acidic solution can be explained by the renaturation scheme in the neutral solution, as reported previously. (Matsuda et al. Polym. J. 41, 526-532, 2009). Both the molar mass and radius of gyration of xanthan in the basic solution were decreased by denaturation and renaturation, and the molar mass dependence of the radius of gyration was similar to that of native xanthan. This change can be explained by the formation of a hairpin structure during renaturation in the basic solutions. Structural changes induced by thermal denaturation and renaturation of a double-helical polysaccharide xanthan in acidic and basic solutions were investigated mainly by light scattering measurements and circular dichroism spectroscopy. In acidic solution, the renatured components were almost the same as those in native components, while small amounts of aggregates and a hairpin structure were produced via denaturation and renaturation processes. In basic solution, the double helices were dissociated upon heating into the single coils, and high molar mass sample produced a hairpin structure after subsequent renaturation.\",\"PeriodicalId\":20302,\"journal\":{\"name\":\"Polymer Journal\",\"volume\":\"56 6\",\"pages\":\"629-637\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41428-024-00892-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41428-024-00892-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
在酸性(0.01 M HCl)和碱性(0.01 M NaOH)溶液中,加热(变性)黄原胶的双螺旋结构,冷却(再变性)黄原胶的双螺旋结构。在酸性和碱性溶液中变性的黄原胶的圆二色光谱与原生黄原胶相似,这表明变性黄原胶的局部螺旋结构通过变性得到了恢复。黄原胶在酸性溶液中的变性引起的摩尔质量和固有粘度的变化可以用中性溶液中的变性方案来解释,这在以前的报道中已有报道。(Matsuda et al. Polym. J. 41, 526-532, 2009)。通过变性和再变性,黄原胶在碱性溶液中的摩尔质量和回转半径都减小了,回 转半径的摩尔质量依赖性与原生黄原胶相似。这种变化可以解释为在碱性溶液中重新变性时形成了发夹结构。
Thermal denaturation and renaturation of a double-helical polysaccharide xanthan in acidic and basic solutions
The double helix of a polysaccharide, xanthan was unwound by heating (denaturation) and rewound by cooling (renaturation) in acidic (0.01 M HCl) and basic (0.01 M NaOH) solutions. Circular dichroism spectra of xanthan renatured in the acidic and basic solutions were similar to those of native xanthan, which suggests that the local helical structures of the renatured xanthan were recovered by renaturation. The changes in the molar mass and intrinsic viscosity of xanthan induced by renaturation in the acidic solution can be explained by the renaturation scheme in the neutral solution, as reported previously. (Matsuda et al. Polym. J. 41, 526-532, 2009). Both the molar mass and radius of gyration of xanthan in the basic solution were decreased by denaturation and renaturation, and the molar mass dependence of the radius of gyration was similar to that of native xanthan. This change can be explained by the formation of a hairpin structure during renaturation in the basic solutions. Structural changes induced by thermal denaturation and renaturation of a double-helical polysaccharide xanthan in acidic and basic solutions were investigated mainly by light scattering measurements and circular dichroism spectroscopy. In acidic solution, the renatured components were almost the same as those in native components, while small amounts of aggregates and a hairpin structure were produced via denaturation and renaturation processes. In basic solution, the double helices were dissociated upon heating into the single coils, and high molar mass sample produced a hairpin structure after subsequent renaturation.
期刊介绍:
Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews.
Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Polymer synthesis and reactions
Polymer structures
Physical properties of polymers
Polymer surface and interfaces
Functional polymers
Supramolecular polymers
Self-assembled materials
Biopolymers and bio-related polymer materials
Polymer engineering.