AirPollutionViz:了解空气污染时空演变的可视化分析方法

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Visualization Pub Date : 2024-02-19 DOI:10.1007/s12650-024-00958-2
{"title":"AirPollutionViz:了解空气污染时空演变的可视化分析方法","authors":"","doi":"10.1007/s12650-024-00958-2","DOIUrl":null,"url":null,"abstract":"<span> <h3>Abstract</h3> <p>Spatio-temporal evolution analysis has been a critical topic of air pollution research. However, there are still several difficulties caused by the large scale and dimensionality of the data. Specifically, First, traditional methods deal with such data by simplifying and abstracting, resulting in information loss. Second, most existing visualizations, generally focusing on overall evolution, ignore the exploration of multiple time scales and pattern transitions between subsequences. This paper presents AirPollutionViz, a visual analytics system that enables to analyze the spatio-temporal evolution in two manners: sequence mining and clustering analysis. Concretely, we propose sequence merging to shorten the sequence length and construct a weighted directed graph structure, which promotes efficient querying of sequence patterns by combination with dynamic time warping. We design a novel summary view to display the overview of pollution level changes, together with the improved node-link chart, to support the analysis of air pollution spatio-temporal evolution patterns. We also apply K-means clustering to pollutants, and a scatter plot and map reflect the spatial distribution aggregation. The system supports users’ free exploration across multiple time scales with rich interactions. Case studies with three domain experts and a user study with ten users demonstrate the usefulness and effectiveness of AirPollutionViz.</p> </span> <span> <h3>Graphical abstract</h3> <p><span> <span> <img alt=\"\" src=\"https://static-content.springer.com/image/MediaObjects/12650_2024_958_Figa_HTML.png\"/> </span> </span></p> </span>","PeriodicalId":54756,"journal":{"name":"Journal of Visualization","volume":"133 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AirPollutionViz: visual analytics for understanding the spatio-temporal evolution of air pollution\",\"authors\":\"\",\"doi\":\"10.1007/s12650-024-00958-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<span> <h3>Abstract</h3> <p>Spatio-temporal evolution analysis has been a critical topic of air pollution research. However, there are still several difficulties caused by the large scale and dimensionality of the data. Specifically, First, traditional methods deal with such data by simplifying and abstracting, resulting in information loss. Second, most existing visualizations, generally focusing on overall evolution, ignore the exploration of multiple time scales and pattern transitions between subsequences. This paper presents AirPollutionViz, a visual analytics system that enables to analyze the spatio-temporal evolution in two manners: sequence mining and clustering analysis. Concretely, we propose sequence merging to shorten the sequence length and construct a weighted directed graph structure, which promotes efficient querying of sequence patterns by combination with dynamic time warping. We design a novel summary view to display the overview of pollution level changes, together with the improved node-link chart, to support the analysis of air pollution spatio-temporal evolution patterns. We also apply K-means clustering to pollutants, and a scatter plot and map reflect the spatial distribution aggregation. The system supports users’ free exploration across multiple time scales with rich interactions. Case studies with three domain experts and a user study with ten users demonstrate the usefulness and effectiveness of AirPollutionViz.</p> </span> <span> <h3>Graphical abstract</h3> <p><span> <span> <img alt=\\\"\\\" src=\\\"https://static-content.springer.com/image/MediaObjects/12650_2024_958_Figa_HTML.png\\\"/> </span> </span></p> </span>\",\"PeriodicalId\":54756,\"journal\":{\"name\":\"Journal of Visualization\",\"volume\":\"133 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visualization\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12650-024-00958-2\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visualization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12650-024-00958-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 时空演变分析一直是空气污染研究的重要课题。然而,由于数据规模大、维度高,目前还存在一些困难。具体来说,首先,传统方法通过简化和抽象来处理此类数据,导致信息丢失。其次,现有的大多数可视化方法一般只关注整体演化,忽略了对多个时间尺度和子序列之间模式转换的探索。本文介绍的 AirPollutionViz 是一种可视化分析系统,可通过序列挖掘和聚类分析两种方式分析时空演变。具体来说,我们提出了序列合并以缩短序列长度,并构建了加权有向图结构,通过与动态时间扭曲相结合,促进了序列模式的高效查询。我们设计了一种新颖的摘要视图来显示污染水平的变化概况,并结合改进的节点链接图,为分析空气污染的时空演变模式提供支持。我们还对污染物进行了 K-means 聚类,散点图和地图反映了空间分布的聚合情况。该系统支持用户在多个时间尺度上自由探索,并具有丰富的交互功能。对三位领域专家进行的案例研究和对十位用户进行的用户研究证明了 AirPollutionViz 的实用性和有效性。 图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AirPollutionViz: visual analytics for understanding the spatio-temporal evolution of air pollution

Abstract

Spatio-temporal evolution analysis has been a critical topic of air pollution research. However, there are still several difficulties caused by the large scale and dimensionality of the data. Specifically, First, traditional methods deal with such data by simplifying and abstracting, resulting in information loss. Second, most existing visualizations, generally focusing on overall evolution, ignore the exploration of multiple time scales and pattern transitions between subsequences. This paper presents AirPollutionViz, a visual analytics system that enables to analyze the spatio-temporal evolution in two manners: sequence mining and clustering analysis. Concretely, we propose sequence merging to shorten the sequence length and construct a weighted directed graph structure, which promotes efficient querying of sequence patterns by combination with dynamic time warping. We design a novel summary view to display the overview of pollution level changes, together with the improved node-link chart, to support the analysis of air pollution spatio-temporal evolution patterns. We also apply K-means clustering to pollutants, and a scatter plot and map reflect the spatial distribution aggregation. The system supports users’ free exploration across multiple time scales with rich interactions. Case studies with three domain experts and a user study with ten users demonstrate the usefulness and effectiveness of AirPollutionViz.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visualization
Journal of Visualization COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
CiteScore
3.40
自引率
5.90%
发文量
79
审稿时长
>12 weeks
期刊介绍: Visualization is an interdisciplinary imaging science devoted to making the invisible visible through the techniques of experimental visualization and computer-aided visualization. The scope of the Journal is to provide a place to exchange information on the latest visualization technology and its application by the presentation of latest papers of both researchers and technicians.
期刊最新文献
Visualizing particle velocity from dual-camera mixed reality video images using 3D particle tracking velocimetry Numerical investigations of heat transfer enhancement in ionic liquid-piston compressor using cooling pipes Scatterplot selection for dimensionality reduction in multidimensional data visualization Robust and multiresolution sparse processing particle image velocimetry for improvement in spatial resolution A user study of visualisations of spatio-temporal eye tracking data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1