Sarah J. Puls, Rachel L. Cook, Justin S. Baker, James L. Rakestraw, Andrew Trlica
{"title":"美国南部松树种植园木制品碳流建模:对碳储存的影响。","authors":"Sarah J. Puls, Rachel L. Cook, Justin S. Baker, James L. Rakestraw, Andrew Trlica","doi":"10.1186/s13021-024-00254-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Wood products continue to store carbon sequestered in forests after harvest and therefore play an important role in the total carbon storage associated with the forest sector. Trade-offs between carbon sequestration/storage in wood product pools and managed forest systems exist, and in order for forest sector carbon modeling to be meaningful, it must link wood product carbon with the specific forest system from which the products originate and have the ability to incorporate in situ and ex situ carbon synchronously over time.</p><h3>Results</h3><p>This study uses elements of a life cycle assessment approach, tracing carbon from US southern pine timber harvests to emission, to create a decision support tool that practitioners can use to inform policy design around land- and bioproduct-based mitigation strategies. We estimate that wood products from annual loblolly and shortleaf pine timber harvests across the southern US store 29.7 MtC in the year they enter the market, and 11.4 MtC remain stored after 120 years. We estimate fossil fuel emissions from the procurement, transportation, and manufacturing of these wood products to be 43.3 MtCO<sub>2</sub>e year<sup>−1</sup>. We found that composite logs, used to manufacture oriented strand board (OSB), were the most efficient log type for storing carbon, storing around 1.8 times as much carbon as saw logs per tonne of log over 120 years.</p><h3>Conclusions</h3><p>Results from our analysis suggest that adjusting rotation length based on individual site productivity, reducing methane emissions from landfills, and extending the storage of carbon in key products, such as corrugated boxes, through longer lifespans, higher recycling rates, and less landfill decomposition could result in significant carbon gains. Our results also highlight the benefits of high site productivity to store more carbon in both in situ and ex situ pools and suggest that shorter rotations could be used to optimize carbon storage on sites when productivity is high.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00254-4","citationCount":"0","resultStr":"{\"title\":\"Modeling wood product carbon flows in southern us pine plantations: implications for carbon storage\",\"authors\":\"Sarah J. Puls, Rachel L. Cook, Justin S. Baker, James L. Rakestraw, Andrew Trlica\",\"doi\":\"10.1186/s13021-024-00254-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Wood products continue to store carbon sequestered in forests after harvest and therefore play an important role in the total carbon storage associated with the forest sector. Trade-offs between carbon sequestration/storage in wood product pools and managed forest systems exist, and in order for forest sector carbon modeling to be meaningful, it must link wood product carbon with the specific forest system from which the products originate and have the ability to incorporate in situ and ex situ carbon synchronously over time.</p><h3>Results</h3><p>This study uses elements of a life cycle assessment approach, tracing carbon from US southern pine timber harvests to emission, to create a decision support tool that practitioners can use to inform policy design around land- and bioproduct-based mitigation strategies. We estimate that wood products from annual loblolly and shortleaf pine timber harvests across the southern US store 29.7 MtC in the year they enter the market, and 11.4 MtC remain stored after 120 years. We estimate fossil fuel emissions from the procurement, transportation, and manufacturing of these wood products to be 43.3 MtCO<sub>2</sub>e year<sup>−1</sup>. We found that composite logs, used to manufacture oriented strand board (OSB), were the most efficient log type for storing carbon, storing around 1.8 times as much carbon as saw logs per tonne of log over 120 years.</p><h3>Conclusions</h3><p>Results from our analysis suggest that adjusting rotation length based on individual site productivity, reducing methane emissions from landfills, and extending the storage of carbon in key products, such as corrugated boxes, through longer lifespans, higher recycling rates, and less landfill decomposition could result in significant carbon gains. Our results also highlight the benefits of high site productivity to store more carbon in both in situ and ex situ pools and suggest that shorter rotations could be used to optimize carbon storage on sites when productivity is high.</p></div>\",\"PeriodicalId\":505,\"journal\":{\"name\":\"Carbon Balance and Management\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00254-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Balance and Management\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13021-024-00254-4\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-024-00254-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Modeling wood product carbon flows in southern us pine plantations: implications for carbon storage
Background
Wood products continue to store carbon sequestered in forests after harvest and therefore play an important role in the total carbon storage associated with the forest sector. Trade-offs between carbon sequestration/storage in wood product pools and managed forest systems exist, and in order for forest sector carbon modeling to be meaningful, it must link wood product carbon with the specific forest system from which the products originate and have the ability to incorporate in situ and ex situ carbon synchronously over time.
Results
This study uses elements of a life cycle assessment approach, tracing carbon from US southern pine timber harvests to emission, to create a decision support tool that practitioners can use to inform policy design around land- and bioproduct-based mitigation strategies. We estimate that wood products from annual loblolly and shortleaf pine timber harvests across the southern US store 29.7 MtC in the year they enter the market, and 11.4 MtC remain stored after 120 years. We estimate fossil fuel emissions from the procurement, transportation, and manufacturing of these wood products to be 43.3 MtCO2e year−1. We found that composite logs, used to manufacture oriented strand board (OSB), were the most efficient log type for storing carbon, storing around 1.8 times as much carbon as saw logs per tonne of log over 120 years.
Conclusions
Results from our analysis suggest that adjusting rotation length based on individual site productivity, reducing methane emissions from landfills, and extending the storage of carbon in key products, such as corrugated boxes, through longer lifespans, higher recycling rates, and less landfill decomposition could result in significant carbon gains. Our results also highlight the benefits of high site productivity to store more carbon in both in situ and ex situ pools and suggest that shorter rotations could be used to optimize carbon storage on sites when productivity is high.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.