新型模块化纳米转运体影响下稳定表达 SARS-CoV-2 病毒的细胞中 N 蛋白降解的定量描述

IF 0.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Doklady Biochemistry and Biophysics Pub Date : 2024-02-20 DOI:10.1134/S1607672923700709
Y. V. Khramtsov, A. V. Ulasov, T. N. Lupanova,  G. P. Georgiev,  A. S. Sobolev
{"title":"新型模块化纳米转运体影响下稳定表达 SARS-CoV-2 病毒的细胞中 N 蛋白降解的定量描述","authors":"Y. V. Khramtsov,&nbsp;A. V. Ulasov,&nbsp;T. N. Lupanova,&nbsp; G. P. Georgiev,&nbsp; A. S. Sobolev","doi":"10.1134/S1607672923700709","DOIUrl":null,"url":null,"abstract":"<p>Two eukaryotic cell lines, A549 and A431, with stable expression of the nucleocapsid protein (N-protein) of the SARS-CoV-2 virus fused with the red fluorescent protein mRuby3 were obtained. Using microscopy, the volumes of the cytoplasm and nucleus were determined for these cells. Using quantitative immunoblotting techniques, the concentrations of the N-mRuby3 fusion protein in their cytoplasm were assessed. They were 19 and 9 μM for A549 and A431 cells, respectively. Using these concentrations, the initial rate of N-protein degradation in the studied cells was estimated from the decrease in cell fluorescence. In A549 and A431 cells, it was the same (84 nM per hour). The approach of quantitatively describing the degradation process can be applied to analyze the effectiveness of a wide class of antiviral drugs that cause degradation of viral proteins.</p>","PeriodicalId":529,"journal":{"name":"Doklady Biochemistry and Biophysics","volume":"513 1 supplement","pages":"S63 - S66"},"PeriodicalIF":0.8000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Description of the N-Protein of the SARS-CoV-2 Virus Degradation in Cells Stably Expressing It under the Influence of New Modular Nanotransporters\",\"authors\":\"Y. V. Khramtsov,&nbsp;A. V. Ulasov,&nbsp;T. N. Lupanova,&nbsp; G. P. Georgiev,&nbsp; A. S. Sobolev\",\"doi\":\"10.1134/S1607672923700709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two eukaryotic cell lines, A549 and A431, with stable expression of the nucleocapsid protein (N-protein) of the SARS-CoV-2 virus fused with the red fluorescent protein mRuby3 were obtained. Using microscopy, the volumes of the cytoplasm and nucleus were determined for these cells. Using quantitative immunoblotting techniques, the concentrations of the N-mRuby3 fusion protein in their cytoplasm were assessed. They were 19 and 9 μM for A549 and A431 cells, respectively. Using these concentrations, the initial rate of N-protein degradation in the studied cells was estimated from the decrease in cell fluorescence. In A549 and A431 cells, it was the same (84 nM per hour). The approach of quantitatively describing the degradation process can be applied to analyze the effectiveness of a wide class of antiviral drugs that cause degradation of viral proteins.</p>\",\"PeriodicalId\":529,\"journal\":{\"name\":\"Doklady Biochemistry and Biophysics\",\"volume\":\"513 1 supplement\",\"pages\":\"S63 - S66\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1607672923700709\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S1607672923700709","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究人员获得了稳定表达融合了红色荧光蛋白 mRuby3 的 SARS-CoV-2 病毒核壳蛋白(N 蛋白)的两种真核细胞系 A549 和 A431。利用显微镜测定了这些细胞的细胞质和细胞核的体积。利用定量免疫印迹技术,评估了细胞质中 N-mRuby3 融合蛋白的浓度。A549 和 A431 细胞的浓度分别为 19 和 9 μM。利用这些浓度,可以根据细胞荧光的下降估算出研究细胞中 N 蛋白的初始降解率。在 A549 和 A431 细胞中,降解速度相同(每小时 84 nM)。定量描述降解过程的方法可用于分析导致病毒蛋白降解的多种抗病毒药物的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantitative Description of the N-Protein of the SARS-CoV-2 Virus Degradation in Cells Stably Expressing It under the Influence of New Modular Nanotransporters

Two eukaryotic cell lines, A549 and A431, with stable expression of the nucleocapsid protein (N-protein) of the SARS-CoV-2 virus fused with the red fluorescent protein mRuby3 were obtained. Using microscopy, the volumes of the cytoplasm and nucleus were determined for these cells. Using quantitative immunoblotting techniques, the concentrations of the N-mRuby3 fusion protein in their cytoplasm were assessed. They were 19 and 9 μM for A549 and A431 cells, respectively. Using these concentrations, the initial rate of N-protein degradation in the studied cells was estimated from the decrease in cell fluorescence. In A549 and A431 cells, it was the same (84 nM per hour). The approach of quantitatively describing the degradation process can be applied to analyze the effectiveness of a wide class of antiviral drugs that cause degradation of viral proteins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Doklady Biochemistry and Biophysics
Doklady Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
1.60
自引率
12.50%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Doklady Biochemistry and Biophysics is a journal consisting of English translations of articles published in Russian in biochemistry and biophysics sections of the Russian-language journal Doklady Akademii Nauk. The journal''s goal is to publish the most significant new research in biochemistry and biophysics carried out in Russia today or in collaboration with Russian authors. The journal accepts only articles in the Russian language that are submitted or recommended by acting Russian or foreign members of the Russian Academy of Sciences. The journal does not accept direct submissions in English.
期刊最新文献
Development of a Panel of Biomarkers for Differential Diagnosis of Multiple Sclerosis. Transriptome Analysis of Peripheral Blood Monocytes in Chronic Obstructive Pulmonary Disease Patients. A Study of the Comparability of the Pharmacodynamic, Toxicological, and Pharmacokinetic Properties of the Reference Drug Pulmozyme® and the Biosimilar Drug Tigerase®. Effect of Bioplastic Material on Adhesion, Growth, and Proliferative Activity of Human Fibroblasts When Incubated in Solutions Mimic the Acidity of Wound an Acute and Chronic Inflammation. Effects of Overexpression of Specific Subunits SAYP, BAP170 of the Chromatin Remodeling Complex in Drosophila Melanogaster.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1