合成聚合物输送 RNA 的趋势。

IF 3.2 4区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Gene Medicine Pub Date : 2024-02-21 DOI:10.1002/jgm.3672
Josh J. Friesen, Anna K. Blakney
{"title":"合成聚合物输送 RNA 的趋势。","authors":"Josh J. Friesen,&nbsp;Anna K. Blakney","doi":"10.1002/jgm.3672","DOIUrl":null,"url":null,"abstract":"<p>Ribonucleic acid (RNA) has emerged as one of the most promising therapeutic payloads in the field of gene therapy. There are many unique types of RNA that allow for a range of applications including vaccination, protein replacement therapy, autoimmune disease treatment, gene knockdown and gene editing. However, RNA triggers the host immune system, is vulnerable to degradation and has a low proclivity to enter cells spontaneously. Therefore, a delivery vehicle is required to facilitate the protection and uptake of RNA therapeutics into the desired host cells. Lipid nanoparticles have emerged as one of the only clinically approved vehicles for genetic payloads, including in the COVID-19 messenger RNA vaccines. While lipid nanoparticles have distinct advantages, they also have drawbacks, including strong immune stimulation, complex manufacturing and formulation heterogeneity. In contrast, synthetic polymers are a widely studied group of gene delivery vehicles and boast distinct advantages, including biocompatibility, tunability, inexpensiveness, simple formulation and ease of modification. Some classes of polymers enhance efficient transfection efficiency, and lead to lower stimulation of the host immune system, making them more viable candidates for non-vaccine-related applications of RNA medicines. This review aims to identify the most promising classes of synthetic polymers, summarize recent research aimed at moving them into the clinic and postulate the future steps required for unlocking their full potential.</p>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgm.3672","citationCount":"0","resultStr":"{\"title\":\"Trends in the synthetic polymer delivery of RNA\",\"authors\":\"Josh J. Friesen,&nbsp;Anna K. Blakney\",\"doi\":\"10.1002/jgm.3672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ribonucleic acid (RNA) has emerged as one of the most promising therapeutic payloads in the field of gene therapy. There are many unique types of RNA that allow for a range of applications including vaccination, protein replacement therapy, autoimmune disease treatment, gene knockdown and gene editing. However, RNA triggers the host immune system, is vulnerable to degradation and has a low proclivity to enter cells spontaneously. Therefore, a delivery vehicle is required to facilitate the protection and uptake of RNA therapeutics into the desired host cells. Lipid nanoparticles have emerged as one of the only clinically approved vehicles for genetic payloads, including in the COVID-19 messenger RNA vaccines. While lipid nanoparticles have distinct advantages, they also have drawbacks, including strong immune stimulation, complex manufacturing and formulation heterogeneity. In contrast, synthetic polymers are a widely studied group of gene delivery vehicles and boast distinct advantages, including biocompatibility, tunability, inexpensiveness, simple formulation and ease of modification. Some classes of polymers enhance efficient transfection efficiency, and lead to lower stimulation of the host immune system, making them more viable candidates for non-vaccine-related applications of RNA medicines. This review aims to identify the most promising classes of synthetic polymers, summarize recent research aimed at moving them into the clinic and postulate the future steps required for unlocking their full potential.</p>\",\"PeriodicalId\":56122,\"journal\":{\"name\":\"Journal of Gene Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgm.3672\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Gene Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgm.3672\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Gene Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgm.3672","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

核糖核酸(RNA)已成为基因治疗领域最有前途的治疗载体之一。核糖核酸有许多独特的类型,可用于疫苗接种、蛋白质替代疗法、自身免疫性疾病治疗、基因敲除和基因编辑等一系列应用。然而,RNA 会触发宿主免疫系统,容易被降解,而且不易自发进入细胞。因此,需要一种输送载体来促进 RNA 治疗药物的保护和被所需宿主细胞吸收。脂质纳米颗粒已成为唯一获得临床批准的基因有效载荷载体,包括 COVID-19 信使 RNA 疫苗。虽然脂质纳米粒子具有明显的优势,但也有缺点,包括强烈的免疫刺激、复杂的制造工艺和配方异质性。相比之下,合成聚合物是一类被广泛研究的基因递送载体,具有独特的优势,包括生物相容性、可调性、低致敏性、配方简单和易于改性。某些类别的聚合物可提高转染效率,降低对宿主免疫系统的刺激,因此更适合用于非疫苗相关的 RNA 药物应用。本综述旨在确定最有前途的几类合成聚合物,总结近期旨在将它们应用于临床的研究,并预测未来释放其全部潜力所需的步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trends in the synthetic polymer delivery of RNA

Ribonucleic acid (RNA) has emerged as one of the most promising therapeutic payloads in the field of gene therapy. There are many unique types of RNA that allow for a range of applications including vaccination, protein replacement therapy, autoimmune disease treatment, gene knockdown and gene editing. However, RNA triggers the host immune system, is vulnerable to degradation and has a low proclivity to enter cells spontaneously. Therefore, a delivery vehicle is required to facilitate the protection and uptake of RNA therapeutics into the desired host cells. Lipid nanoparticles have emerged as one of the only clinically approved vehicles for genetic payloads, including in the COVID-19 messenger RNA vaccines. While lipid nanoparticles have distinct advantages, they also have drawbacks, including strong immune stimulation, complex manufacturing and formulation heterogeneity. In contrast, synthetic polymers are a widely studied group of gene delivery vehicles and boast distinct advantages, including biocompatibility, tunability, inexpensiveness, simple formulation and ease of modification. Some classes of polymers enhance efficient transfection efficiency, and lead to lower stimulation of the host immune system, making them more viable candidates for non-vaccine-related applications of RNA medicines. This review aims to identify the most promising classes of synthetic polymers, summarize recent research aimed at moving them into the clinic and postulate the future steps required for unlocking their full potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Gene Medicine
Journal of Gene Medicine 医学-生物工程与应用微生物
CiteScore
6.40
自引率
0.00%
发文量
80
审稿时长
6-12 weeks
期刊介绍: The aims and scope of The Journal of Gene Medicine include cutting-edge science of gene transfer and its applications in gene and cell therapy, genome editing with precision nucleases, epigenetic modifications of host genome by small molecules, siRNA, microRNA and other noncoding RNAs as therapeutic gene-modulating agents or targets, biomarkers for precision medicine, and gene-based prognostic/diagnostic studies. Key areas of interest are the design of novel synthetic and viral vectors, novel therapeutic nucleic acids such as mRNA, modified microRNAs and siRNAs, antagomirs, aptamers, antisense and exon-skipping agents, refined genome editing tools using nucleic acid /protein combinations, physically or biologically targeted delivery and gene modulation, ex vivo or in vivo pharmacological studies including animal models, and human clinical trials. Papers presenting research into the mechanisms underlying transfer and action of gene medicines, the application of the new technologies for stem cell modification or nucleic acid based vaccines, the identification of new genetic or epigenetic variations as biomarkers to direct precision medicine, and the preclinical/clinical development of gene/expression signatures indicative of diagnosis or predictive of prognosis are also encouraged.
期刊最新文献
ANGPTL4—A protein involved in glucose metabolism, lipid metabolism, and tumor development Issue Information The suppression of OTUD7B by miR-491-5p enhances the ubiquitination of VEGFA to suppress vascular mimicry in non-small cell lung cancer The activation of asparagine synthetase by the transcription factor FOXM1 plays a pivotal role in the initiation and progression of ESCC Dipeptidyl peptidase 4: A predictor of ferroptosis in ulcerative colitis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1