统计降尺度 ECMWF S2S 预测南非上空第 1-4 周最高和最低气温的概率技能

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Meteorological Applications Pub Date : 2024-02-21 DOI:10.1002/met.2176
Steven Phakula, Willem A. Landman, Christien J. Engelbrecht
{"title":"统计降尺度 ECMWF S2S 预测南非上空第 1-4 周最高和最低气温的概率技能","authors":"Steven Phakula,&nbsp;Willem A. Landman,&nbsp;Christien J. Engelbrecht","doi":"10.1002/met.2176","DOIUrl":null,"url":null,"abstract":"<p>The probabilistic forecast skill level of statistically downscaled European Centre for Medium-Range Weather Forecasts (ECMWF) subseasonal-to-seasonal (S2S) forecasts is determined in predicting maximum and minimum temperatures for weeks 1–4 lead times during 20-year December–January–February (DJF) seasons from 2001 to 2020 over South Africa. Skilful S2S forecasts are vital in assisting decision-makers in the development of contingency planning for any eventualities that may arise because of weather and climate phenomena. Extreme high- and low-temperature events over a prolonged period can lead to hyperthermia and hypothermia, respectively, and can lead to loss of life. The results from the relative operating characteristic (ROC) and reliability diagrams indicate that the ECMWF S2S model has skill in predicting maximum temperature up to week 3 ahead, particularly over the central and eastern parts of South Africa. The ROC scores indicate that the model has skill in predicting minimum temperature up to week 4 ahead for the above-normal category, particularly over the central and eastern parts of South Africa. Reliability diagrams indicate that the model has a tendency of overestimating the below-normal category when predicting both maximum and minimum temperatures for weeks 1–4 lead times over South Africa. Furthermore, canonical correlation analysis (CCA) pattern analysis suggests that when there are anomalously positive and negative predicted 850-hPa geopotential heights located over South Africa, there are anomalously hot and cold conditions during the DJF seasons over most parts of South Africa, respectively. These results suggests that statistical downscaling of model forecasts can improve forecast skill. Moreover, the results suggest that there is potential for S2S predictions in South Africa, and as such, S2S prediction system for maximum and minimum temperatures can be developed.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"31 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.2176","citationCount":"0","resultStr":"{\"title\":\"Probabilistic skill of statistically downscaled ECMWF S2S forecasts of maximum and minimum temperatures for weeks 1–4 over South Africa\",\"authors\":\"Steven Phakula,&nbsp;Willem A. Landman,&nbsp;Christien J. Engelbrecht\",\"doi\":\"10.1002/met.2176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The probabilistic forecast skill level of statistically downscaled European Centre for Medium-Range Weather Forecasts (ECMWF) subseasonal-to-seasonal (S2S) forecasts is determined in predicting maximum and minimum temperatures for weeks 1–4 lead times during 20-year December–January–February (DJF) seasons from 2001 to 2020 over South Africa. Skilful S2S forecasts are vital in assisting decision-makers in the development of contingency planning for any eventualities that may arise because of weather and climate phenomena. Extreme high- and low-temperature events over a prolonged period can lead to hyperthermia and hypothermia, respectively, and can lead to loss of life. The results from the relative operating characteristic (ROC) and reliability diagrams indicate that the ECMWF S2S model has skill in predicting maximum temperature up to week 3 ahead, particularly over the central and eastern parts of South Africa. The ROC scores indicate that the model has skill in predicting minimum temperature up to week 4 ahead for the above-normal category, particularly over the central and eastern parts of South Africa. Reliability diagrams indicate that the model has a tendency of overestimating the below-normal category when predicting both maximum and minimum temperatures for weeks 1–4 lead times over South Africa. Furthermore, canonical correlation analysis (CCA) pattern analysis suggests that when there are anomalously positive and negative predicted 850-hPa geopotential heights located over South Africa, there are anomalously hot and cold conditions during the DJF seasons over most parts of South Africa, respectively. These results suggests that statistical downscaling of model forecasts can improve forecast skill. Moreover, the results suggest that there is potential for S2S predictions in South Africa, and as such, S2S prediction system for maximum and minimum temperatures can be developed.</p>\",\"PeriodicalId\":49825,\"journal\":{\"name\":\"Meteorological Applications\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.2176\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteorological Applications\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/met.2176\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/met.2176","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

欧洲中期天气预报中心(ECMWF)次季节到季节(S2S)预报的概率预报技能水平是在预测 2001 年至 2020 年南非 12 月-1 月-2 月(DJF)20 年季节中第 1-4 周的最高和最低气温时确定的。娴熟的 S2S 预测对于协助决策者制定应急计划以应对任何可能出现的天气和气候现象至关重要。长时间的极端高温和低温事件可分别导致高热和低温,并可能造成生命损失。相对运行特征(ROC)和可靠性图的结果表明,ECMWF S2S 模式在预测未来第 3 周的最高气温方面具有一定的技能,尤其是在南非中部和东部地区。ROC 评分表明,该模式在预测未来第 4 周高于正常值类别的最低气温方面具有一定的能力,尤其是在南非中部和东部地区。可靠性图显示,该模式在预测南非第 1 至 4 周的最高和最低气温时,有高估低于正常气温类别的趋势。此外,典型相关分析(CCA)模式分析表明,当南非上空的 850 hPa 地球位势高度预测值出现异常正值和负值时,南非大部分地区在 DJF 季节会分别出现异常热和异常冷的情况。这些结果表明,对模式预报进行统计降尺度可以提高预报技能。此外,这些结果表明,南非存在进行 S2S 预测的潜力,因此可以开发最高和最低气温的 S2S 预测系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic skill of statistically downscaled ECMWF S2S forecasts of maximum and minimum temperatures for weeks 1–4 over South Africa

The probabilistic forecast skill level of statistically downscaled European Centre for Medium-Range Weather Forecasts (ECMWF) subseasonal-to-seasonal (S2S) forecasts is determined in predicting maximum and minimum temperatures for weeks 1–4 lead times during 20-year December–January–February (DJF) seasons from 2001 to 2020 over South Africa. Skilful S2S forecasts are vital in assisting decision-makers in the development of contingency planning for any eventualities that may arise because of weather and climate phenomena. Extreme high- and low-temperature events over a prolonged period can lead to hyperthermia and hypothermia, respectively, and can lead to loss of life. The results from the relative operating characteristic (ROC) and reliability diagrams indicate that the ECMWF S2S model has skill in predicting maximum temperature up to week 3 ahead, particularly over the central and eastern parts of South Africa. The ROC scores indicate that the model has skill in predicting minimum temperature up to week 4 ahead for the above-normal category, particularly over the central and eastern parts of South Africa. Reliability diagrams indicate that the model has a tendency of overestimating the below-normal category when predicting both maximum and minimum temperatures for weeks 1–4 lead times over South Africa. Furthermore, canonical correlation analysis (CCA) pattern analysis suggests that when there are anomalously positive and negative predicted 850-hPa geopotential heights located over South Africa, there are anomalously hot and cold conditions during the DJF seasons over most parts of South Africa, respectively. These results suggests that statistical downscaling of model forecasts can improve forecast skill. Moreover, the results suggest that there is potential for S2S predictions in South Africa, and as such, S2S prediction system for maximum and minimum temperatures can be developed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meteorological Applications
Meteorological Applications 地学-气象与大气科学
CiteScore
5.70
自引率
3.70%
发文量
62
审稿时长
>12 weeks
期刊介绍: The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including: applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits; forecasting, warning and service delivery techniques and methods; weather hazards, their analysis and prediction; performance, verification and value of numerical models and forecasting services; practical applications of ocean and climate models; education and training.
期刊最新文献
Estimation of extreme wind speeds with different return periods in the Northwest Pacific Impact of INSAT-3D land surface temperature assimilation via simplified extended Kalman filter-based land data assimilation system on forecasting of surface fields over India Improving blended probability forecasts with neural networks Correction to “Skilful probabilistic medium-range precipitation and temperature forecasts over Vietnam for the development of a future dengue early warning system” Drought forecasting with regionalization of climate variables and generalized linear model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1