{"title":"为通信资源有限的联合图神经网络选择基于贪婪的用户","authors":"Hancong Huangfu, Zizhen Zhang","doi":"10.1111/coin.12637","DOIUrl":null,"url":null,"abstract":"<p>Recently, graph neural networks (GNNs) have attracted much attention in the field of machine learning due to their remarkable success in learning from graph-structured data. However, implementing GNNs in practice faces a critical bottleneck from the high complexity of communication and computation, which arises from the frequent exchange of graphic data during model training, especially in limited communication scenarios. To address this issue, we propose a novel framework of federated graph neural networks, where multiple mobile users collaboratively train the global model of graph neural networks in a federated way. The utilization of federated learning into the training of graph neural networks can help reduce the communication overhead of the system and protect the data privacy of local users. In addition, the federated training can help reduce the system computational complexity significantly. We further introduce a greedy-based user selection for the federated graph neural networks, where the wireless bandwidth is dynamically allocated among users to encourage more users to attend the federated training of neural networks. We perform the convergence analysis on the federated training of neural networks, in order to obtain some more insights on the impact of critical parameters on the system design. Finally, we perform the simulations on the coriolis ocean for reAnalysis (CORA) dataset and show the advantages of the proposed method in this paper.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Greedy-based user selection for federated graph neural networks with limited communication resources\",\"authors\":\"Hancong Huangfu, Zizhen Zhang\",\"doi\":\"10.1111/coin.12637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, graph neural networks (GNNs) have attracted much attention in the field of machine learning due to their remarkable success in learning from graph-structured data. However, implementing GNNs in practice faces a critical bottleneck from the high complexity of communication and computation, which arises from the frequent exchange of graphic data during model training, especially in limited communication scenarios. To address this issue, we propose a novel framework of federated graph neural networks, where multiple mobile users collaboratively train the global model of graph neural networks in a federated way. The utilization of federated learning into the training of graph neural networks can help reduce the communication overhead of the system and protect the data privacy of local users. In addition, the federated training can help reduce the system computational complexity significantly. We further introduce a greedy-based user selection for the federated graph neural networks, where the wireless bandwidth is dynamically allocated among users to encourage more users to attend the federated training of neural networks. We perform the convergence analysis on the federated training of neural networks, in order to obtain some more insights on the impact of critical parameters on the system design. Finally, we perform the simulations on the coriolis ocean for reAnalysis (CORA) dataset and show the advantages of the proposed method in this paper.</p>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.12637\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12637","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Greedy-based user selection for federated graph neural networks with limited communication resources
Recently, graph neural networks (GNNs) have attracted much attention in the field of machine learning due to their remarkable success in learning from graph-structured data. However, implementing GNNs in practice faces a critical bottleneck from the high complexity of communication and computation, which arises from the frequent exchange of graphic data during model training, especially in limited communication scenarios. To address this issue, we propose a novel framework of federated graph neural networks, where multiple mobile users collaboratively train the global model of graph neural networks in a federated way. The utilization of federated learning into the training of graph neural networks can help reduce the communication overhead of the system and protect the data privacy of local users. In addition, the federated training can help reduce the system computational complexity significantly. We further introduce a greedy-based user selection for the federated graph neural networks, where the wireless bandwidth is dynamically allocated among users to encourage more users to attend the federated training of neural networks. We perform the convergence analysis on the federated training of neural networks, in order to obtain some more insights on the impact of critical parameters on the system design. Finally, we perform the simulations on the coriolis ocean for reAnalysis (CORA) dataset and show the advantages of the proposed method in this paper.
期刊介绍:
This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.