Gen Li, Ningxin Hou, Huagang Liu, Jun Li, Hongping Deng, Hongwen Lan, Sizheng Xiong
{"title":"达帕格列净通过诱导自噬减轻高血糖诱导的内皮细胞损伤","authors":"Gen Li, Ningxin Hou, Huagang Liu, Jun Li, Hongping Deng, Hongwen Lan, Sizheng Xiong","doi":"10.1111/1440-1681.13846","DOIUrl":null,"url":null,"abstract":"<p>Hyperglycaemia is a key factor in the progression of diabetes complications. Dapagliflozin (DAPA), a new type of hypoglycaemic agent, has been shown to play an important role in anti-apoptotic, anti-inflammatory and antioxidant activities. Previous studies have demonstrated an endothelial protective effect of DAPA, but the underlying mechanism was still unclear. Autophagy is a homeostatic cellular mechanism that circulates unfolded proteins and damaged organelles through lysosomal dependent degradation. In this study, we aimed to investigate whether DAPA plays a protective role against high glucose (HG)-induced endothelial injury through regulating autophagy. The results showed that DAPA treatment resulted in increased cell viability. Additionally, DAPA treatment decreased interleukin (IL)-1β, IL-6, and tumour necrosis factor-α levels in endothelial cells subjected to HG conditions. We observed that HG inhibited autophagy, and DAPA increased the autophagy level by inhibiting the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway. Chloroquine reversed all of these beneficial effects as an autophagy inhibitor. In summary, the endothelial protective effect of DAPA in HG can be attributed in part to its role in activating of autophagy via the AKT/mTOR signalling pathway. Therefore, suggesting that the activation of autophagy by DAPA may be a novel target for the treatment of HG-induced endothelial cell injury.</p>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"51 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dapagliflozin alleviates high glucose-induced injury of endothelial cells via inducing autophagy\",\"authors\":\"Gen Li, Ningxin Hou, Huagang Liu, Jun Li, Hongping Deng, Hongwen Lan, Sizheng Xiong\",\"doi\":\"10.1111/1440-1681.13846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hyperglycaemia is a key factor in the progression of diabetes complications. Dapagliflozin (DAPA), a new type of hypoglycaemic agent, has been shown to play an important role in anti-apoptotic, anti-inflammatory and antioxidant activities. Previous studies have demonstrated an endothelial protective effect of DAPA, but the underlying mechanism was still unclear. Autophagy is a homeostatic cellular mechanism that circulates unfolded proteins and damaged organelles through lysosomal dependent degradation. In this study, we aimed to investigate whether DAPA plays a protective role against high glucose (HG)-induced endothelial injury through regulating autophagy. The results showed that DAPA treatment resulted in increased cell viability. Additionally, DAPA treatment decreased interleukin (IL)-1β, IL-6, and tumour necrosis factor-α levels in endothelial cells subjected to HG conditions. We observed that HG inhibited autophagy, and DAPA increased the autophagy level by inhibiting the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway. Chloroquine reversed all of these beneficial effects as an autophagy inhibitor. In summary, the endothelial protective effect of DAPA in HG can be attributed in part to its role in activating of autophagy via the AKT/mTOR signalling pathway. Therefore, suggesting that the activation of autophagy by DAPA may be a novel target for the treatment of HG-induced endothelial cell injury.</p>\",\"PeriodicalId\":50684,\"journal\":{\"name\":\"Clinical and Experimental Pharmacology and Physiology\",\"volume\":\"51 4\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Pharmacology and Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.13846\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.13846","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Dapagliflozin alleviates high glucose-induced injury of endothelial cells via inducing autophagy
Hyperglycaemia is a key factor in the progression of diabetes complications. Dapagliflozin (DAPA), a new type of hypoglycaemic agent, has been shown to play an important role in anti-apoptotic, anti-inflammatory and antioxidant activities. Previous studies have demonstrated an endothelial protective effect of DAPA, but the underlying mechanism was still unclear. Autophagy is a homeostatic cellular mechanism that circulates unfolded proteins and damaged organelles through lysosomal dependent degradation. In this study, we aimed to investigate whether DAPA plays a protective role against high glucose (HG)-induced endothelial injury through regulating autophagy. The results showed that DAPA treatment resulted in increased cell viability. Additionally, DAPA treatment decreased interleukin (IL)-1β, IL-6, and tumour necrosis factor-α levels in endothelial cells subjected to HG conditions. We observed that HG inhibited autophagy, and DAPA increased the autophagy level by inhibiting the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway. Chloroquine reversed all of these beneficial effects as an autophagy inhibitor. In summary, the endothelial protective effect of DAPA in HG can be attributed in part to its role in activating of autophagy via the AKT/mTOR signalling pathway. Therefore, suggesting that the activation of autophagy by DAPA may be a novel target for the treatment of HG-induced endothelial cell injury.
期刊介绍:
Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.