通过正交基因表达控制优化迭代途径的代谢通量:β-氧化逆转的应用

IF 6.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Metabolic engineering Pub Date : 2024-03-01 DOI:10.1016/j.ymben.2024.02.007
Seung Hwan Lee , Yang Hu , Alexander Chou, Jing Chen, Ramon Gonzalez
{"title":"通过正交基因表达控制优化迭代途径的代谢通量:β-氧化逆转的应用","authors":"Seung Hwan Lee ,&nbsp;Yang Hu ,&nbsp;Alexander Chou,&nbsp;Jing Chen,&nbsp;Ramon Gonzalez","doi":"10.1016/j.ymben.2024.02.007","DOIUrl":null,"url":null,"abstract":"<div><p>Balancing relative expression of pathway genes to minimize flux bottlenecks and metabolic burden is one of the key challenges in metabolic engineering. This is especially relevant for iterative pathways, such as reverse β-oxidation (rBOX) pathway, which require control of flux partition at multiple nodes to achieve efficient synthesis of target products. Here, we develop a plasmid-based inducible system for orthogonal control of gene expression (referred to as the TriO system) and demonstrate its utility in the rBOX pathway. Leveraging effortless construction of TriO vectors in a plug-and-play manner, we simultaneously explored the solution space for enzyme choice and relative expression levels. Remarkably, varying individual expression levels led to substantial change in product specificity ranging from no production to optimal performance of about 90% of the theoretical yield of the desired products. We obtained titers of 6.3 g/L butyrate, 2.2 g/L butanol and 4.0 g/L hexanoate from glycerol in <em>E. coli</em>, which exceed the best titers previously reported using equivalent enzyme combinations. Since a similar system behavior was observed with alternative termination routes and higher-order iterations, we envision our approach to be broadly applicable to other iterative pathways besides the rBOX. Considering that high throughput, automated strain construction using combinatorial promoter and RBS libraries remain out of reach for many researchers, especially in academia, tools like the TriO system could democratize the testing and evaluation of pathway designs by reducing cost, time and infrastructure requirements.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic flux optimization of iterative pathways through orthogonal gene expression control: Application to the β-oxidation reversal\",\"authors\":\"Seung Hwan Lee ,&nbsp;Yang Hu ,&nbsp;Alexander Chou,&nbsp;Jing Chen,&nbsp;Ramon Gonzalez\",\"doi\":\"10.1016/j.ymben.2024.02.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Balancing relative expression of pathway genes to minimize flux bottlenecks and metabolic burden is one of the key challenges in metabolic engineering. This is especially relevant for iterative pathways, such as reverse β-oxidation (rBOX) pathway, which require control of flux partition at multiple nodes to achieve efficient synthesis of target products. Here, we develop a plasmid-based inducible system for orthogonal control of gene expression (referred to as the TriO system) and demonstrate its utility in the rBOX pathway. Leveraging effortless construction of TriO vectors in a plug-and-play manner, we simultaneously explored the solution space for enzyme choice and relative expression levels. Remarkably, varying individual expression levels led to substantial change in product specificity ranging from no production to optimal performance of about 90% of the theoretical yield of the desired products. We obtained titers of 6.3 g/L butyrate, 2.2 g/L butanol and 4.0 g/L hexanoate from glycerol in <em>E. coli</em>, which exceed the best titers previously reported using equivalent enzyme combinations. Since a similar system behavior was observed with alternative termination routes and higher-order iterations, we envision our approach to be broadly applicable to other iterative pathways besides the rBOX. Considering that high throughput, automated strain construction using combinatorial promoter and RBS libraries remain out of reach for many researchers, especially in academia, tools like the TriO system could democratize the testing and evaluation of pathway designs by reducing cost, time and infrastructure requirements.</p></div>\",\"PeriodicalId\":18483,\"journal\":{\"name\":\"Metabolic engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1096717624000235\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717624000235","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

平衡通路基因的相对表达以最大限度地减少通路瓶颈和代谢负担是代谢工程的关键挑战之一。这对于迭代途径(如反向β-氧化(rBOX)途径)尤为重要,该途径需要控制多个节点的通量分配,以实现目标产物的高效合成。在这里,我们开发了一种基于质粒的可诱导系统,用于正交控制基因表达(称为 TriO 系统),并证明了它在 rBOX 通路中的实用性。利用即插即用的方式轻松构建 TriO 载体,我们同时探索了酶选择和相对表达水平的解决方案空间。值得注意的是,单个表达水平的不同会导致产品特异性发生重大变化,从不产酶到达到所需产品理论产量约 90% 的最佳性能。我们在大肠杆菌中从甘油中获得了 6.3 克/升丁酸盐、2.2 克/升丁醇和 4.0 克/升己酸盐的滴度,超过了之前报道的使用同等酶组合的最佳滴度。由于在其他终止途径和高阶迭代中观察到了类似的系统行为,我们设想我们的方法可广泛应用于 rBOX 以外的其他迭代途径。考虑到使用组合启动子和 RBS 文库进行高通量、自动化菌株构建对许多研究人员(尤其是学术界)来说仍然遥不可及,像 TriO 系统这样的工具可以通过降低成本、缩短时间和减少对基础设施的要求,使途径设计的测试和评估平民化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metabolic flux optimization of iterative pathways through orthogonal gene expression control: Application to the β-oxidation reversal

Balancing relative expression of pathway genes to minimize flux bottlenecks and metabolic burden is one of the key challenges in metabolic engineering. This is especially relevant for iterative pathways, such as reverse β-oxidation (rBOX) pathway, which require control of flux partition at multiple nodes to achieve efficient synthesis of target products. Here, we develop a plasmid-based inducible system for orthogonal control of gene expression (referred to as the TriO system) and demonstrate its utility in the rBOX pathway. Leveraging effortless construction of TriO vectors in a plug-and-play manner, we simultaneously explored the solution space for enzyme choice and relative expression levels. Remarkably, varying individual expression levels led to substantial change in product specificity ranging from no production to optimal performance of about 90% of the theoretical yield of the desired products. We obtained titers of 6.3 g/L butyrate, 2.2 g/L butanol and 4.0 g/L hexanoate from glycerol in E. coli, which exceed the best titers previously reported using equivalent enzyme combinations. Since a similar system behavior was observed with alternative termination routes and higher-order iterations, we envision our approach to be broadly applicable to other iterative pathways besides the rBOX. Considering that high throughput, automated strain construction using combinatorial promoter and RBS libraries remain out of reach for many researchers, especially in academia, tools like the TriO system could democratize the testing and evaluation of pathway designs by reducing cost, time and infrastructure requirements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolic engineering
Metabolic engineering 工程技术-生物工程与应用微生物
CiteScore
15.60
自引率
6.00%
发文量
140
审稿时长
44 days
期刊介绍: Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.
期刊最新文献
Combinatorial iterative method for metabolic engineering of Yarrowia lipolytica: application for betanin biosynthesis. The 6-phosphofructokinase reaction in Acetivibrio thermocellus is both ATP- and pyrophosphate-dependent A precise and sustainable doxycycline-inducible cell line development platform for reliable mammalian cell engineering with gain-of-function mutations A machine learning framework for extracting information from biological pathway images in the literature Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1