E. A. Pukhova, E. G. Byshueva, E. V. Domarov, B. B. Batyrov, V. G. Burov
{"title":"钼电子束包层对铬镍奥氏体钢 12Kh18N9T 表面层耐热性和耐磨性的影响","authors":"E. A. Pukhova, E. G. Byshueva, E. V. Domarov, B. B. Batyrov, V. G. Burov","doi":"10.1007/s11041-024-00981-y","DOIUrl":null,"url":null,"abstract":"<p>The structure and properties of surface layers of billets from steel 12Kh18N9T formed by vacuum electron beam surfacing of powder mixtures are studied. The main alloying component is molybdenum in an amount of 40 wt.%. The structural and phase studies are made using optical and electron microscopes and an x-ray diffractometer. The microhardness and the wear resistance of the deposited layers are determined. The structure of the hardened surface layer is shown to contain phases Mo<sub>0.08</sub>Fe<sub>0.92</sub>, Mo<sub>0.9</sub>Fe<sub>0.1</sub>, Mo<sub>0.1</sub>Fe<sub>0.9</sub>, α-Fe and γ-Fe. The alloying with molybdenum raises the wear resistance of the steel by a factor of 1.8 and the heat resistance by a factor of 6.7.</p>","PeriodicalId":701,"journal":{"name":"Metal Science and Heat Treatment","volume":"65 9-10","pages":"629 - 634"},"PeriodicalIF":0.6000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Molybdenum Electron-Beam Cladding on the Heat and Wear Resistances of Surface Layers of Chromium-Nickel Austenitic Steel 12Kh18N9T\",\"authors\":\"E. A. Pukhova, E. G. Byshueva, E. V. Domarov, B. B. Batyrov, V. G. Burov\",\"doi\":\"10.1007/s11041-024-00981-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The structure and properties of surface layers of billets from steel 12Kh18N9T formed by vacuum electron beam surfacing of powder mixtures are studied. The main alloying component is molybdenum in an amount of 40 wt.%. The structural and phase studies are made using optical and electron microscopes and an x-ray diffractometer. The microhardness and the wear resistance of the deposited layers are determined. The structure of the hardened surface layer is shown to contain phases Mo<sub>0.08</sub>Fe<sub>0.92</sub>, Mo<sub>0.9</sub>Fe<sub>0.1</sub>, Mo<sub>0.1</sub>Fe<sub>0.9</sub>, α-Fe and γ-Fe. The alloying with molybdenum raises the wear resistance of the steel by a factor of 1.8 and the heat resistance by a factor of 6.7.</p>\",\"PeriodicalId\":701,\"journal\":{\"name\":\"Metal Science and Heat Treatment\",\"volume\":\"65 9-10\",\"pages\":\"629 - 634\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metal Science and Heat Treatment\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11041-024-00981-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal Science and Heat Treatment","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11041-024-00981-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Effect of Molybdenum Electron-Beam Cladding on the Heat and Wear Resistances of Surface Layers of Chromium-Nickel Austenitic Steel 12Kh18N9T
The structure and properties of surface layers of billets from steel 12Kh18N9T formed by vacuum electron beam surfacing of powder mixtures are studied. The main alloying component is molybdenum in an amount of 40 wt.%. The structural and phase studies are made using optical and electron microscopes and an x-ray diffractometer. The microhardness and the wear resistance of the deposited layers are determined. The structure of the hardened surface layer is shown to contain phases Mo0.08Fe0.92, Mo0.9Fe0.1, Mo0.1Fe0.9, α-Fe and γ-Fe. The alloying with molybdenum raises the wear resistance of the steel by a factor of 1.8 and the heat resistance by a factor of 6.7.
期刊介绍:
Metal Science and Heat Treatment presents new fundamental and practical research in physical metallurgy, heat treatment equipment, and surface engineering.
Topics covered include:
New structural, high temperature, tool and precision steels;
Cold-resistant, corrosion-resistant and radiation-resistant steels;
Steels with rapid decline of induced properties;
Alloys with shape memory effect;
Bulk-amorphyzable metal alloys;
Microcrystalline alloys;
Nano materials and foam materials for medical use.