{"title":"从宇宙学统一暗流模型重构 f(R) 引力","authors":"Esraa Ali Elkhateeb","doi":"10.1007/s10701-023-00751-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we reconstruct the cosmological unified dark fluid model proposed previously by Elkhateeb (Astrophys Space Sci 363(1):7, 2018) in the framework of <i>f</i>(<i>R</i>) gravity. Utilizing the equivalence between the scalar-tensor theory and the <i>f</i>(<i>R</i>) gravity theory, the scalar field for the dark fluid is obtained, whence the <i>f</i>(<i>R</i>) function is extracted and its viability is discussed. The <i>f</i>(<i>R</i>) functions and the scalar field potentials have then been extracted in the early and late times of asymptotically de Sitter spacetime. The ability of our function to describe early time inflation is also tested. The early time scalar field potential is used to derive the slow roll inflation parameters. Our results of the tensor-to-scalar ratio <i>r</i> and the scalar spectral index <span>\\(n_s\\)</span> are in good agreement with results from Planck-2018 TT+TE+EE+lowE data for the model parameter <span>\\(n > 2\\)</span>.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10701-023-00751-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of f(R) Gravity from Cosmological Unified Dark Fluid Model\",\"authors\":\"Esraa Ali Elkhateeb\",\"doi\":\"10.1007/s10701-023-00751-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we reconstruct the cosmological unified dark fluid model proposed previously by Elkhateeb (Astrophys Space Sci 363(1):7, 2018) in the framework of <i>f</i>(<i>R</i>) gravity. Utilizing the equivalence between the scalar-tensor theory and the <i>f</i>(<i>R</i>) gravity theory, the scalar field for the dark fluid is obtained, whence the <i>f</i>(<i>R</i>) function is extracted and its viability is discussed. The <i>f</i>(<i>R</i>) functions and the scalar field potentials have then been extracted in the early and late times of asymptotically de Sitter spacetime. The ability of our function to describe early time inflation is also tested. The early time scalar field potential is used to derive the slow roll inflation parameters. Our results of the tensor-to-scalar ratio <i>r</i> and the scalar spectral index <span>\\\\(n_s\\\\)</span> are in good agreement with results from Planck-2018 TT+TE+EE+lowE data for the model parameter <span>\\\\(n > 2\\\\)</span>.</p></div>\",\"PeriodicalId\":569,\"journal\":{\"name\":\"Foundations of Physics\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10701-023-00751-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10701-023-00751-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-023-00751-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Reconstruction of f(R) Gravity from Cosmological Unified Dark Fluid Model
In this work, we reconstruct the cosmological unified dark fluid model proposed previously by Elkhateeb (Astrophys Space Sci 363(1):7, 2018) in the framework of f(R) gravity. Utilizing the equivalence between the scalar-tensor theory and the f(R) gravity theory, the scalar field for the dark fluid is obtained, whence the f(R) function is extracted and its viability is discussed. The f(R) functions and the scalar field potentials have then been extracted in the early and late times of asymptotically de Sitter spacetime. The ability of our function to describe early time inflation is also tested. The early time scalar field potential is used to derive the slow roll inflation parameters. Our results of the tensor-to-scalar ratio r and the scalar spectral index \(n_s\) are in good agreement with results from Planck-2018 TT+TE+EE+lowE data for the model parameter \(n > 2\).
期刊介绍:
The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others.
Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments.
Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises.
The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.