从宇宙学统一暗流模型重构 f(R) 引力

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Foundations of Physics Pub Date : 2024-02-19 DOI:10.1007/s10701-023-00751-5
Esraa Ali Elkhateeb
{"title":"从宇宙学统一暗流模型重构 f(R) 引力","authors":"Esraa Ali Elkhateeb","doi":"10.1007/s10701-023-00751-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we reconstruct the cosmological unified dark fluid model proposed previously by Elkhateeb (Astrophys Space Sci 363(1):7, 2018) in the framework of <i>f</i>(<i>R</i>) gravity. Utilizing the equivalence between the scalar-tensor theory and the <i>f</i>(<i>R</i>) gravity theory, the scalar field for the dark fluid is obtained, whence the <i>f</i>(<i>R</i>) function is extracted and its viability is discussed. The <i>f</i>(<i>R</i>) functions and the scalar field potentials have then been extracted in the early and late times of asymptotically de Sitter spacetime. The ability of our function to describe early time inflation is also tested. The early time scalar field potential is used to derive the slow roll inflation parameters. Our results of the tensor-to-scalar ratio <i>r</i> and the scalar spectral index <span>\\(n_s\\)</span> are in good agreement with results from Planck-2018 TT+TE+EE+lowE data for the model parameter <span>\\(n &gt; 2\\)</span>.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10701-023-00751-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of f(R) Gravity from Cosmological Unified Dark Fluid Model\",\"authors\":\"Esraa Ali Elkhateeb\",\"doi\":\"10.1007/s10701-023-00751-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we reconstruct the cosmological unified dark fluid model proposed previously by Elkhateeb (Astrophys Space Sci 363(1):7, 2018) in the framework of <i>f</i>(<i>R</i>) gravity. Utilizing the equivalence between the scalar-tensor theory and the <i>f</i>(<i>R</i>) gravity theory, the scalar field for the dark fluid is obtained, whence the <i>f</i>(<i>R</i>) function is extracted and its viability is discussed. The <i>f</i>(<i>R</i>) functions and the scalar field potentials have then been extracted in the early and late times of asymptotically de Sitter spacetime. The ability of our function to describe early time inflation is also tested. The early time scalar field potential is used to derive the slow roll inflation parameters. Our results of the tensor-to-scalar ratio <i>r</i> and the scalar spectral index <span>\\\\(n_s\\\\)</span> are in good agreement with results from Planck-2018 TT+TE+EE+lowE data for the model parameter <span>\\\\(n &gt; 2\\\\)</span>.</p></div>\",\"PeriodicalId\":569,\"journal\":{\"name\":\"Foundations of Physics\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10701-023-00751-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10701-023-00751-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-023-00751-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在这项工作中,我们在f(R)引力框架下重构了Elkhateeb(Astrophys Space Sci 363(1):7,2018)之前提出的宇宙学统一暗流体模型。利用标量张量理论与f(R)引力理论之间的等价性,得到暗流体的标量场,进而提取f(R)函数并讨论其可行性。然后,在渐近德西特时空的早期和晚期提取了 f(R) 函数和标量场势。我们还测试了函数描述早期膨胀的能力。早期标量场势被用来推导慢滚膨胀参数。我们的张量-标量比r和标量谱指数\(n_s\)的结果与Planck-2018 TT+TE+EE+lowE数据中模型参数\(n > 2\) 的结果非常一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconstruction of f(R) Gravity from Cosmological Unified Dark Fluid Model

In this work, we reconstruct the cosmological unified dark fluid model proposed previously by Elkhateeb (Astrophys Space Sci 363(1):7, 2018) in the framework of f(R) gravity. Utilizing the equivalence between the scalar-tensor theory and the f(R) gravity theory, the scalar field for the dark fluid is obtained, whence the f(R) function is extracted and its viability is discussed. The f(R) functions and the scalar field potentials have then been extracted in the early and late times of asymptotically de Sitter spacetime. The ability of our function to describe early time inflation is also tested. The early time scalar field potential is used to derive the slow roll inflation parameters. Our results of the tensor-to-scalar ratio r and the scalar spectral index \(n_s\) are in good agreement with results from Planck-2018 TT+TE+EE+lowE data for the model parameter \(n > 2\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations of Physics
Foundations of Physics 物理-物理:综合
CiteScore
2.70
自引率
6.70%
发文量
104
审稿时长
6-12 weeks
期刊介绍: The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others. Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments. Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises. The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.
期刊最新文献
Dressing vs. Fixing: On How to Extract and Interpret Gauge-Invariant Content The Determinacy Problem in Quantum Mechanics Complementary Detector and State Preparation Error and Classicality in the Spin-j Einstein–Podolsky–Rosen–Bohm Experiment Conservation Laws in Quantum Database Search Reply to Hofer-Szabó: The PBR Theorem hasn’t been Saved
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1