Lingxiu Liu, Minyu Suo, Changjie Shi, Nan Li, Hua Pan, Dzmitry Hrynsphan, Savitskaya Tatsiana, Raúl Robles-Iglesias, Zeyu Wang, Jun Chen
{"title":"阐明 N2OR 催化过程中的电子传递途径以减少 N2O 排放:综述","authors":"Lingxiu Liu, Minyu Suo, Changjie Shi, Nan Li, Hua Pan, Dzmitry Hrynsphan, Savitskaya Tatsiana, Raúl Robles-Iglesias, Zeyu Wang, Jun Chen","doi":"10.1007/s11157-024-09685-4","DOIUrl":null,"url":null,"abstract":"<div><p>Nitrous oxide (N<sub>2</sub>O) is a potent greenhouse gas that accumulates in the atmosphere due to anthropogenic N<sub>2</sub>O emissions, disrupting the nitrogen balance. N<sub>2</sub>O reductase (N<sub>2</sub>OR) in denitrifying bacteria contributes to the nitrogen cycle by converting N<sub>2</sub>O to molecular nitrogen as a last step. For the reduction of N<sub>2</sub>O during denitrification, electron donors must supply two electrons. This review discusses the in vivo physiological electron donors involved in the reduction reaction of N<sub>2</sub>OR: cytochrome <i>c</i><sub>55X</sub> and pseudoazurin, as well as the non-physiological electron donors commonly used in N<sub>2</sub>OR studies: reduced MV/BV, dithionite, and ascorbate. The kinetic parameters of the connection between N<sub>2</sub>OR and the electron donors are also included. This aim of this review to gain further insight into the reduction mechanism of N<sub>2</sub>OR, presenting the electron transfer center, Cu<sub>A</sub>, and the catalytic center, Cu<sub>Z</sub>, of N<sub>2</sub>OR. The state changes of Cu site have a significant impact on electron transfer and N<sub>2</sub>O binding. Moreover, the review focuses on potential electron transfer pathways and binding sites in the electron donor → Cu<sub>A</sub> → Cu<sub>Z</sub> process, along with the steady-state turnover in the Cu<sub>Z</sub> site. Additionally, the review explains the commonly used methods in mechanistic studies of N<sub>2</sub>OR. Modulating the electron transfer pathways of N<sub>2</sub>OR holds promise as an approach to decreasing N<sub>2</sub>O emissions.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":754,"journal":{"name":"Reviews in Environmental Science and Bio/Technology","volume":"23 1","pages":"1 - 19"},"PeriodicalIF":8.6000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating electron transfer pathways in N2OR catalysis for mitigation of N2O emissions: a comprehensive review\",\"authors\":\"Lingxiu Liu, Minyu Suo, Changjie Shi, Nan Li, Hua Pan, Dzmitry Hrynsphan, Savitskaya Tatsiana, Raúl Robles-Iglesias, Zeyu Wang, Jun Chen\",\"doi\":\"10.1007/s11157-024-09685-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nitrous oxide (N<sub>2</sub>O) is a potent greenhouse gas that accumulates in the atmosphere due to anthropogenic N<sub>2</sub>O emissions, disrupting the nitrogen balance. N<sub>2</sub>O reductase (N<sub>2</sub>OR) in denitrifying bacteria contributes to the nitrogen cycle by converting N<sub>2</sub>O to molecular nitrogen as a last step. For the reduction of N<sub>2</sub>O during denitrification, electron donors must supply two electrons. This review discusses the in vivo physiological electron donors involved in the reduction reaction of N<sub>2</sub>OR: cytochrome <i>c</i><sub>55X</sub> and pseudoazurin, as well as the non-physiological electron donors commonly used in N<sub>2</sub>OR studies: reduced MV/BV, dithionite, and ascorbate. The kinetic parameters of the connection between N<sub>2</sub>OR and the electron donors are also included. This aim of this review to gain further insight into the reduction mechanism of N<sub>2</sub>OR, presenting the electron transfer center, Cu<sub>A</sub>, and the catalytic center, Cu<sub>Z</sub>, of N<sub>2</sub>OR. The state changes of Cu site have a significant impact on electron transfer and N<sub>2</sub>O binding. Moreover, the review focuses on potential electron transfer pathways and binding sites in the electron donor → Cu<sub>A</sub> → Cu<sub>Z</sub> process, along with the steady-state turnover in the Cu<sub>Z</sub> site. Additionally, the review explains the commonly used methods in mechanistic studies of N<sub>2</sub>OR. Modulating the electron transfer pathways of N<sub>2</sub>OR holds promise as an approach to decreasing N<sub>2</sub>O emissions.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":754,\"journal\":{\"name\":\"Reviews in Environmental Science and Bio/Technology\",\"volume\":\"23 1\",\"pages\":\"1 - 19\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Environmental Science and Bio/Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11157-024-09685-4\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Environmental Science and Bio/Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11157-024-09685-4","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Elucidating electron transfer pathways in N2OR catalysis for mitigation of N2O emissions: a comprehensive review
Nitrous oxide (N2O) is a potent greenhouse gas that accumulates in the atmosphere due to anthropogenic N2O emissions, disrupting the nitrogen balance. N2O reductase (N2OR) in denitrifying bacteria contributes to the nitrogen cycle by converting N2O to molecular nitrogen as a last step. For the reduction of N2O during denitrification, electron donors must supply two electrons. This review discusses the in vivo physiological electron donors involved in the reduction reaction of N2OR: cytochrome c55X and pseudoazurin, as well as the non-physiological electron donors commonly used in N2OR studies: reduced MV/BV, dithionite, and ascorbate. The kinetic parameters of the connection between N2OR and the electron donors are also included. This aim of this review to gain further insight into the reduction mechanism of N2OR, presenting the electron transfer center, CuA, and the catalytic center, CuZ, of N2OR. The state changes of Cu site have a significant impact on electron transfer and N2O binding. Moreover, the review focuses on potential electron transfer pathways and binding sites in the electron donor → CuA → CuZ process, along with the steady-state turnover in the CuZ site. Additionally, the review explains the commonly used methods in mechanistic studies of N2OR. Modulating the electron transfer pathways of N2OR holds promise as an approach to decreasing N2O emissions.
期刊介绍:
Reviews in Environmental Science and Bio/Technology is a publication that offers easily comprehensible, reliable, and well-rounded perspectives and evaluations in the realm of environmental science and (bio)technology. It disseminates the most recent progressions and timely compilations of groundbreaking scientific discoveries, technological advancements, practical applications, policy developments, and societal concerns encompassing all facets of environmental science and (bio)technology. Furthermore, it tackles broader aspects beyond the natural sciences, incorporating subjects such as education, funding, policy-making, intellectual property, and societal influence.