有机突触晶体管:用于体内应用的生物兼容神经形态器件

IF 2.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Organic Electronics Pub Date : 2024-02-16 DOI:10.1016/j.orgel.2024.107014
Hyowon Jang , Swarup Biswas , Philippe Lang , Jin-Hyuk Bae , Hyeok Kim
{"title":"有机突触晶体管:用于体内应用的生物兼容神经形态器件","authors":"Hyowon Jang ,&nbsp;Swarup Biswas ,&nbsp;Philippe Lang ,&nbsp;Jin-Hyuk Bae ,&nbsp;Hyeok Kim","doi":"10.1016/j.orgel.2024.107014","DOIUrl":null,"url":null,"abstract":"<div><p>This review elucidates the potential of Organic Thin Film Transistors (OTFTs) for biocompatible synaptic devices in in-vivo medical applications. Emphasizing attributes like flexibility and reduced environmental footprint, OTFTs are distinguished from traditional silicon counterparts. The synthesis of electronic capabilities and biological emulation in synaptic transistors is dissected, spotlighting their role in neuromorphic computing. This exploration centers on biocompatibility, detailing criteria, challenges, and the integration of organic electronics with living systems. Furthermore, potential applications, innovations, and future prospects of OTFT-driven synaptic devices are addressed. Critical technical, ethical, and societal challenges within this interdisciplinary nexus are outlined. The confluence of OTFTs, synaptic transistors, and biocompatibility heralds a paradigm shift in techno-biological convergence.</p></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organic synaptic transistors: Biocompatible neuromorphic devices for in-vivo applications\",\"authors\":\"Hyowon Jang ,&nbsp;Swarup Biswas ,&nbsp;Philippe Lang ,&nbsp;Jin-Hyuk Bae ,&nbsp;Hyeok Kim\",\"doi\":\"10.1016/j.orgel.2024.107014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review elucidates the potential of Organic Thin Film Transistors (OTFTs) for biocompatible synaptic devices in in-vivo medical applications. Emphasizing attributes like flexibility and reduced environmental footprint, OTFTs are distinguished from traditional silicon counterparts. The synthesis of electronic capabilities and biological emulation in synaptic transistors is dissected, spotlighting their role in neuromorphic computing. This exploration centers on biocompatibility, detailing criteria, challenges, and the integration of organic electronics with living systems. Furthermore, potential applications, innovations, and future prospects of OTFT-driven synaptic devices are addressed. Critical technical, ethical, and societal challenges within this interdisciplinary nexus are outlined. The confluence of OTFTs, synaptic transistors, and biocompatibility heralds a paradigm shift in techno-biological convergence.</p></div>\",\"PeriodicalId\":399,\"journal\":{\"name\":\"Organic Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566119924000259\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924000259","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这篇综述阐明了有机薄膜晶体管(OTFT)在体内医疗应用的生物兼容突触设备方面的潜力。有机薄膜晶体管强调灵活性和减少环境足迹等特性,有别于传统的硅晶体管。本文剖析了突触晶体管中电子功能和生物仿真的合成,重点介绍了它们在神经形态计算中的作用。这一探讨以生物兼容性为中心,详细介绍了有机电子产品与生命系统集成的标准、挑战和集成。此外,还探讨了 OTFT 驱动的突触设备的潜在应用、创新和未来前景。此外,还概述了这一跨学科关系中的关键技术、伦理和社会挑战。OTFT、突触晶体管和生物兼容性的融合预示着技术与生物融合的范式转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Organic synaptic transistors: Biocompatible neuromorphic devices for in-vivo applications

This review elucidates the potential of Organic Thin Film Transistors (OTFTs) for biocompatible synaptic devices in in-vivo medical applications. Emphasizing attributes like flexibility and reduced environmental footprint, OTFTs are distinguished from traditional silicon counterparts. The synthesis of electronic capabilities and biological emulation in synaptic transistors is dissected, spotlighting their role in neuromorphic computing. This exploration centers on biocompatibility, detailing criteria, challenges, and the integration of organic electronics with living systems. Furthermore, potential applications, innovations, and future prospects of OTFT-driven synaptic devices are addressed. Critical technical, ethical, and societal challenges within this interdisciplinary nexus are outlined. The confluence of OTFTs, synaptic transistors, and biocompatibility heralds a paradigm shift in techno-biological convergence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Organic Electronics
Organic Electronics 工程技术-材料科学:综合
CiteScore
6.60
自引率
6.20%
发文量
238
审稿时长
44 days
期刊介绍: Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc. Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.
期刊最新文献
Optimization the Potential of Solution Process Fluorine Passivated Zinc Oxide Electron Transport Layer for Stable InP-Quantum Dot Light Emitting Diodes A comprehensive review of organic frameworks: From synthesis to perovskite solar cells fabrication Effective surface treatment for efficient and stable inverted inorganic CsPbI2Br perovskite solar cells Introducing steric groups to thermally activated delayed fluorescence emitter for constructing efficient non-doped solution-processed organic light-emitting diodes Computational screening of multi-resonance thermally activated delayed fluorescence (MR-TADF) molecules for lasing application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1