通过叠氮半乳糖的代谢结合对新合成的脂多糖进行特异性标记

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Molecular and cell biology of lipids Pub Date : 2024-02-19 DOI:10.1016/j.bbalip.2024.159467
Yang Xu , Xiaoqi Wang , Esther A. Zaal , Celia R. Berkers , Joseph H. Lorent , Torben Heise , Ruud Cox , Roland J. Pieters , Eefjan Breukink
{"title":"通过叠氮半乳糖的代谢结合对新合成的脂多糖进行特异性标记","authors":"Yang Xu ,&nbsp;Xiaoqi Wang ,&nbsp;Esther A. Zaal ,&nbsp;Celia R. Berkers ,&nbsp;Joseph H. Lorent ,&nbsp;Torben Heise ,&nbsp;Ruud Cox ,&nbsp;Roland J. Pieters ,&nbsp;Eefjan Breukink","doi":"10.1016/j.bbalip.2024.159467","DOIUrl":null,"url":null,"abstract":"<div><p>Gram-negative bacteria possess an asymmetric outer membrane (OM) primarily composed of lipopolysaccharides (LPS) on the outer leaflet and phospholipids on the inner leaflet. The outer membrane functions as an effective permeability barrier to compounds such as antibiotics. Studying LPS biosynthesis is therefore helpful to explore novel strategies for new antibiotic development. Metabolic glycan labeling of the bacterial surface has emerged as a powerful method to investigate LPS biosynthesis. However, the previously reported methods of labeling LPS are based on radioactivity or difficult-to-produce analogs of bacterial sugars. In this study, we report on the incorporation of azido galactose into the LPS of the Gram-negative bacteria <em>Escherichia coli</em> and <em>Salmonella typhi</em> via metabolic labeling. As a common sugar analog, azido galactose successfully labeled both O-antigen and core of <em>Salmonella</em> LPS, but not <em>E. coli</em> LPS. This labeling of <em>Salmonella</em> LPS, as shown by SDS-PAGE analysis and fluorescence microscopy, differs from the previously reported labeling of either O-antigen or core of LPS. Our findings are useful for studying LPS biogenesis pathways in Gram-negative bacteria like <em>Salmonella</em>. In addition, our approach is helpful for screening for agents that target LPS biosynthesis as it allows for the detection of newly synthesized LPS that appears in the OM. Furthermore, this approach may also aid in isolating chemically modified LPS for vaccine development or immunotherapy.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388198124000179/pdfft?md5=4a82ed614aa7ec06eb7307a18b9cceeb&pid=1-s2.0-S1388198124000179-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Specific labeling of newly synthesized lipopolysaccharide via metabolic incorporation of azido-galactose\",\"authors\":\"Yang Xu ,&nbsp;Xiaoqi Wang ,&nbsp;Esther A. Zaal ,&nbsp;Celia R. Berkers ,&nbsp;Joseph H. Lorent ,&nbsp;Torben Heise ,&nbsp;Ruud Cox ,&nbsp;Roland J. Pieters ,&nbsp;Eefjan Breukink\",\"doi\":\"10.1016/j.bbalip.2024.159467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gram-negative bacteria possess an asymmetric outer membrane (OM) primarily composed of lipopolysaccharides (LPS) on the outer leaflet and phospholipids on the inner leaflet. The outer membrane functions as an effective permeability barrier to compounds such as antibiotics. Studying LPS biosynthesis is therefore helpful to explore novel strategies for new antibiotic development. Metabolic glycan labeling of the bacterial surface has emerged as a powerful method to investigate LPS biosynthesis. However, the previously reported methods of labeling LPS are based on radioactivity or difficult-to-produce analogs of bacterial sugars. In this study, we report on the incorporation of azido galactose into the LPS of the Gram-negative bacteria <em>Escherichia coli</em> and <em>Salmonella typhi</em> via metabolic labeling. As a common sugar analog, azido galactose successfully labeled both O-antigen and core of <em>Salmonella</em> LPS, but not <em>E. coli</em> LPS. This labeling of <em>Salmonella</em> LPS, as shown by SDS-PAGE analysis and fluorescence microscopy, differs from the previously reported labeling of either O-antigen or core of LPS. Our findings are useful for studying LPS biogenesis pathways in Gram-negative bacteria like <em>Salmonella</em>. In addition, our approach is helpful for screening for agents that target LPS biosynthesis as it allows for the detection of newly synthesized LPS that appears in the OM. Furthermore, this approach may also aid in isolating chemically modified LPS for vaccine development or immunotherapy.</p></div>\",\"PeriodicalId\":8815,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1388198124000179/pdfft?md5=4a82ed614aa7ec06eb7307a18b9cceeb&pid=1-s2.0-S1388198124000179-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388198124000179\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198124000179","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

革兰氏阴性细菌有一层不对称的外膜(OM),主要由外侧的脂多糖(LPS)和内侧的磷脂组成。外膜是抗生素等化合物的有效渗透屏障。因此,研究 LPS 的生物合成有助于探索开发新抗生素的新策略。细菌表面的代谢聚糖标记已成为研究 LPS 生物合成的有力方法。然而,之前报道的 LPS 标记方法都是基于放射性或难以生产的细菌糖类类似物。在本研究中,我们报告了通过代谢标记将叠氮半乳糖加入革兰氏阴性菌大肠杆菌和伤寒沙门氏菌的 LPS 的情况。作为一种常见的糖类似物,叠氮半乳糖成功标记了沙门氏菌 LPS 的 O 抗原和核心,但没有标记大肠杆菌 LPS。正如 SDS-PAGE 分析和荧光显微镜所显示的那样,沙门氏菌 LPS 的这种标记不同于之前报道的对 LPS 的 O 抗原或核心的标记。我们的发现有助于研究沙门氏菌等革兰氏阴性菌的 LPS 生物发生途径。此外,我们的方法还有助于筛选针对 LPS 生物合成的药物,因为它可以检测 OM 中出现的新合成的 LPS。此外,这种方法还有助于分离化学修饰的 LPS,用于疫苗开发或免疫疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Specific labeling of newly synthesized lipopolysaccharide via metabolic incorporation of azido-galactose

Gram-negative bacteria possess an asymmetric outer membrane (OM) primarily composed of lipopolysaccharides (LPS) on the outer leaflet and phospholipids on the inner leaflet. The outer membrane functions as an effective permeability barrier to compounds such as antibiotics. Studying LPS biosynthesis is therefore helpful to explore novel strategies for new antibiotic development. Metabolic glycan labeling of the bacterial surface has emerged as a powerful method to investigate LPS biosynthesis. However, the previously reported methods of labeling LPS are based on radioactivity or difficult-to-produce analogs of bacterial sugars. In this study, we report on the incorporation of azido galactose into the LPS of the Gram-negative bacteria Escherichia coli and Salmonella typhi via metabolic labeling. As a common sugar analog, azido galactose successfully labeled both O-antigen and core of Salmonella LPS, but not E. coli LPS. This labeling of Salmonella LPS, as shown by SDS-PAGE analysis and fluorescence microscopy, differs from the previously reported labeling of either O-antigen or core of LPS. Our findings are useful for studying LPS biogenesis pathways in Gram-negative bacteria like Salmonella. In addition, our approach is helpful for screening for agents that target LPS biosynthesis as it allows for the detection of newly synthesized LPS that appears in the OM. Furthermore, this approach may also aid in isolating chemically modified LPS for vaccine development or immunotherapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
2.10%
发文量
109
审稿时长
53 days
期刊介绍: BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.
期刊最新文献
Eicosanoid biosynthesizing enzymes in Prototheria Lipid imaging mass spectrometry: Towards a new molecular histology Sex-specific response of the human plasma lipidome to short-term cold exposure Dysregulation of lipid metabolism in the liver of Tspo knockout mice Seasonal and genetic effects on lipid profiles of juvenile Atlantic salmon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1