多队列雾系统中的概率截止时间感知应用卸载:最大熵框架

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-02-22 DOI:10.1007/s10723-024-09753-7
{"title":"多队列雾系统中的概率截止时间感知应用卸载:最大熵框架","authors":"","doi":"10.1007/s10723-024-09753-7","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Cloud computing and its derivatives, such as fog and edge computing, have propelled the IoT era, integrating AI and deep learning for process automation. Despite transformative growth in healthcare, education, and automation domains, challenges persist, particularly in addressing the impact of multi-hopping public networks on data upload time, affecting response time, failure rates, and security. Existing scheduling algorithms, designed for multiple parameters like deadline, priority, rate of arrival, and arrival pattern, can minimize execution time for high-priority applications. However, the difficulty lies in simultaneously minimizing overall application execution time while mitigating resource depletion issues for low-priority applications. This paper introduces a cloud-fog-based computing architecture to tackle fog node resource starvation, incorporating joint probability, loss probability, and maximum entropy concepts. The proposed model utilizes a probabilistic application scheduling algorithm, considering priority and deadline and employing expected loss probability for task offloading. Additionally, a second algorithm focuses on resource starvation, optimizing task sequence for minimal response time and improved quality of service in a multi-Queueing fog system. The paper demonstrates that the proposed model outperforms state-of-the-art models, achieving a 3.43-5.71% quality of service improvement and a 99.75-267.68 msec reduction in response time through efficient resource allocation.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Probabilistic Deadline-aware Application Offloading in a Multi-Queueing Fog System: A Max Entropy Framework\",\"authors\":\"\",\"doi\":\"10.1007/s10723-024-09753-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Cloud computing and its derivatives, such as fog and edge computing, have propelled the IoT era, integrating AI and deep learning for process automation. Despite transformative growth in healthcare, education, and automation domains, challenges persist, particularly in addressing the impact of multi-hopping public networks on data upload time, affecting response time, failure rates, and security. Existing scheduling algorithms, designed for multiple parameters like deadline, priority, rate of arrival, and arrival pattern, can minimize execution time for high-priority applications. However, the difficulty lies in simultaneously minimizing overall application execution time while mitigating resource depletion issues for low-priority applications. This paper introduces a cloud-fog-based computing architecture to tackle fog node resource starvation, incorporating joint probability, loss probability, and maximum entropy concepts. The proposed model utilizes a probabilistic application scheduling algorithm, considering priority and deadline and employing expected loss probability for task offloading. Additionally, a second algorithm focuses on resource starvation, optimizing task sequence for minimal response time and improved quality of service in a multi-Queueing fog system. The paper demonstrates that the proposed model outperforms state-of-the-art models, achieving a 3.43-5.71% quality of service improvement and a 99.75-267.68 msec reduction in response time through efficient resource allocation.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10723-024-09753-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-024-09753-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要 云计算及其衍生产品(如雾计算和边缘计算)推动了物联网时代的到来,并将人工智能和深度学习整合到流程自动化中。尽管在医疗保健、教育和自动化领域取得了变革性增长,但挑战依然存在,特别是在解决多跳公共网络对数据上传时间的影响方面,影响响应时间、故障率和安全性。现有的调度算法针对截止日期、优先级、到达率和到达模式等多个参数进行设计,可以最大限度地缩短高优先级应用的执行时间。然而,难点在于如何在减少低优先级应用的资源耗尽问题的同时,最大限度地缩短整体应用的执行时间。本文结合联合概率、损失概率和最大熵概念,介绍了一种基于云雾的计算架构,以解决雾节点资源匮乏问题。建议的模型采用概率应用调度算法,考虑优先级和截止日期,并利用预期损失概率进行任务卸载。此外,第二种算法重点关注资源饥饿问题,优化任务序列,以实现最短响应时间,提高多队列雾系统的服务质量。论文表明,所提出的模型优于最先进的模型,通过有效的资源分配,服务质量提高了 3.43-5.71%,响应时间缩短了 99.75-267.68 毫秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Probabilistic Deadline-aware Application Offloading in a Multi-Queueing Fog System: A Max Entropy Framework

Abstract

Cloud computing and its derivatives, such as fog and edge computing, have propelled the IoT era, integrating AI and deep learning for process automation. Despite transformative growth in healthcare, education, and automation domains, challenges persist, particularly in addressing the impact of multi-hopping public networks on data upload time, affecting response time, failure rates, and security. Existing scheduling algorithms, designed for multiple parameters like deadline, priority, rate of arrival, and arrival pattern, can minimize execution time for high-priority applications. However, the difficulty lies in simultaneously minimizing overall application execution time while mitigating resource depletion issues for low-priority applications. This paper introduces a cloud-fog-based computing architecture to tackle fog node resource starvation, incorporating joint probability, loss probability, and maximum entropy concepts. The proposed model utilizes a probabilistic application scheduling algorithm, considering priority and deadline and employing expected loss probability for task offloading. Additionally, a second algorithm focuses on resource starvation, optimizing task sequence for minimal response time and improved quality of service in a multi-Queueing fog system. The paper demonstrates that the proposed model outperforms state-of-the-art models, achieving a 3.43-5.71% quality of service improvement and a 99.75-267.68 msec reduction in response time through efficient resource allocation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1