{"title":"基于模型预测控制的自动驾驶汽车速度变化路径跟踪","authors":"Shuang Tang, Jun Li, Wei Zhou","doi":"10.1007/s12239-024-00033-7","DOIUrl":null,"url":null,"abstract":"<p>In order to improve autonomous vehicles path-tracking accuracy and stability, a lateral–longitudinal coordination path-tracking control method is proposed. The proposed coordination control consists of path-tracking control and speed tracking control. First, the desired safety speed is planned according to the known road curvature and adhesion coefficient in order to prevent the tire force saturation. Based on the three-degree-of-freedom (3DOF) vehicle dynamic model and the preview tracking error model, model predictive control (MPC) theory is adopted to design the speed-varying vehicle path-tracking controller. Then, the quadratic programming (QP) method is used to solve the objective function with constraints, which calculates the steering angle to control the vehicle track the reference path. In addition, a PID speed controller is designed to calculate the torque of each wheel to track the desired speed. Finally, according to the yaw rate error and the vehicle slip angle error, a yaw moment stability controller based on the fuzzy logic control theory is designed to balance the vehicle stability and motility. The simulation results based on a Matlab/Carsim platform show that the coordination path-tracking control method proposed in this paper can effectively improve the vehicle tracking accuracy and the stability on different roads.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"37 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speed-Varying Path Tracking Based on Model Predictive Control for Autonomous Vehicles\",\"authors\":\"Shuang Tang, Jun Li, Wei Zhou\",\"doi\":\"10.1007/s12239-024-00033-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to improve autonomous vehicles path-tracking accuracy and stability, a lateral–longitudinal coordination path-tracking control method is proposed. The proposed coordination control consists of path-tracking control and speed tracking control. First, the desired safety speed is planned according to the known road curvature and adhesion coefficient in order to prevent the tire force saturation. Based on the three-degree-of-freedom (3DOF) vehicle dynamic model and the preview tracking error model, model predictive control (MPC) theory is adopted to design the speed-varying vehicle path-tracking controller. Then, the quadratic programming (QP) method is used to solve the objective function with constraints, which calculates the steering angle to control the vehicle track the reference path. In addition, a PID speed controller is designed to calculate the torque of each wheel to track the desired speed. Finally, according to the yaw rate error and the vehicle slip angle error, a yaw moment stability controller based on the fuzzy logic control theory is designed to balance the vehicle stability and motility. The simulation results based on a Matlab/Carsim platform show that the coordination path-tracking control method proposed in this paper can effectively improve the vehicle tracking accuracy and the stability on different roads.</p>\",\"PeriodicalId\":50338,\"journal\":{\"name\":\"International Journal of Automotive Technology\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00033-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00033-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Speed-Varying Path Tracking Based on Model Predictive Control for Autonomous Vehicles
In order to improve autonomous vehicles path-tracking accuracy and stability, a lateral–longitudinal coordination path-tracking control method is proposed. The proposed coordination control consists of path-tracking control and speed tracking control. First, the desired safety speed is planned according to the known road curvature and adhesion coefficient in order to prevent the tire force saturation. Based on the three-degree-of-freedom (3DOF) vehicle dynamic model and the preview tracking error model, model predictive control (MPC) theory is adopted to design the speed-varying vehicle path-tracking controller. Then, the quadratic programming (QP) method is used to solve the objective function with constraints, which calculates the steering angle to control the vehicle track the reference path. In addition, a PID speed controller is designed to calculate the torque of each wheel to track the desired speed. Finally, according to the yaw rate error and the vehicle slip angle error, a yaw moment stability controller based on the fuzzy logic control theory is designed to balance the vehicle stability and motility. The simulation results based on a Matlab/Carsim platform show that the coordination path-tracking control method proposed in this paper can effectively improve the vehicle tracking accuracy and the stability on different roads.
期刊介绍:
The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies.
The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published.
When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors.
No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.