通过视频小组推广改进小农农业

IF 5.1 1区 经济学 Q1 ECONOMICS Journal of Development Economics Pub Date : 2024-02-18 DOI:10.1016/j.jdeveco.2024.103267
Tushi Baul , Dean Karlan , Kentaro Toyama , Kathryn Vasilaky
{"title":"通过视频小组推广改进小农农业","authors":"Tushi Baul ,&nbsp;Dean Karlan ,&nbsp;Kentaro Toyama ,&nbsp;Kathryn Vasilaky","doi":"10.1016/j.jdeveco.2024.103267","DOIUrl":null,"url":null,"abstract":"<div><p>Providing agricultural advice at scale poses operational challenges. Technology may help if repeating content reinforces learning for recipients and thus improves adoption, but risks reducing efficacy given limited customization and human interaction. We tested videos shared with female farmers in India as a supplement to standard human-provided extension services promoting a climate-smart practice, System Rice Intensification. The average treatment effects are large but imprecise because of non-normally distributed outcomes, specifically fat right tails. Weighted quantile regressions show that the imprecision in estimating an average treatment effect comes from farmers with output or yields in the upper quantiles. Both quantile regressions of the 25% and 50% quantiles and a Bayesian hierarchical model (robust to several priors) reveal positive treatment effects, and two subtreatments, one that reinforces information on labor costs from adoption and a second that presents role models to motivate adoption, lead to even higher estimated treatment effects on output.</p></div>","PeriodicalId":48418,"journal":{"name":"Journal of Development Economics","volume":"169 ","pages":"Article 103267"},"PeriodicalIF":5.1000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304387824000166/pdfft?md5=d6547e7771651a99a222ca3f9c3c9c26&pid=1-s2.0-S0304387824000166-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Improving smallholder agriculture via video-based group extension\",\"authors\":\"Tushi Baul ,&nbsp;Dean Karlan ,&nbsp;Kentaro Toyama ,&nbsp;Kathryn Vasilaky\",\"doi\":\"10.1016/j.jdeveco.2024.103267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Providing agricultural advice at scale poses operational challenges. Technology may help if repeating content reinforces learning for recipients and thus improves adoption, but risks reducing efficacy given limited customization and human interaction. We tested videos shared with female farmers in India as a supplement to standard human-provided extension services promoting a climate-smart practice, System Rice Intensification. The average treatment effects are large but imprecise because of non-normally distributed outcomes, specifically fat right tails. Weighted quantile regressions show that the imprecision in estimating an average treatment effect comes from farmers with output or yields in the upper quantiles. Both quantile regressions of the 25% and 50% quantiles and a Bayesian hierarchical model (robust to several priors) reveal positive treatment effects, and two subtreatments, one that reinforces information on labor costs from adoption and a second that presents role models to motivate adoption, lead to even higher estimated treatment effects on output.</p></div>\",\"PeriodicalId\":48418,\"journal\":{\"name\":\"Journal of Development Economics\",\"volume\":\"169 \",\"pages\":\"Article 103267\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304387824000166/pdfft?md5=d6547e7771651a99a222ca3f9c3c9c26&pid=1-s2.0-S0304387824000166-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Development Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304387824000166\",\"RegionNum\":1,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Development Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304387824000166","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

大规模提供农业建议带来了操作上的挑战。如果重复的内容能加强接受者的学习,从而提高采用率,那么技术可能会有所帮助,但由于定制和人际互动有限,技术可能会降低效果。我们测试了与印度女性农民分享的视频,作为对标准人工推广服务的补充,促进了气候智能实践--系统水稻集约化。平均治疗效果很大,但由于结果非正态分布,特别是右侧肥尾,因此并不精确。加权量化回归表明,平均治疗效果估计值不精确的原因是农民的产出或产量处于较高的量化水平。对 25%和 50%定量组的量值回归以及贝叶斯分层模型(对多个先验值都是稳健的)都显示出积极的治疗效果,而两种子治疗方法(一种是通过采用强化劳动力成本信息,另一种是通过介绍角色模型来激励采用)导致对产出的估计治疗效果更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving smallholder agriculture via video-based group extension

Providing agricultural advice at scale poses operational challenges. Technology may help if repeating content reinforces learning for recipients and thus improves adoption, but risks reducing efficacy given limited customization and human interaction. We tested videos shared with female farmers in India as a supplement to standard human-provided extension services promoting a climate-smart practice, System Rice Intensification. The average treatment effects are large but imprecise because of non-normally distributed outcomes, specifically fat right tails. Weighted quantile regressions show that the imprecision in estimating an average treatment effect comes from farmers with output or yields in the upper quantiles. Both quantile regressions of the 25% and 50% quantiles and a Bayesian hierarchical model (robust to several priors) reveal positive treatment effects, and two subtreatments, one that reinforces information on labor costs from adoption and a second that presents role models to motivate adoption, lead to even higher estimated treatment effects on output.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
4.00%
发文量
126
审稿时长
72 days
期刊介绍: The Journal of Development Economics publishes papers relating to all aspects of economic development - from immediate policy concerns to structural problems of underdevelopment. The emphasis is on quantitative or analytical work, which is relevant as well as intellectually stimulating.
期刊最新文献
Editorial Board On the properties of the two main types of global poverty lines The local human capital costs of oil exploitation Cover more for less: Targeted drug coverage, chronic disease management, and medical spending Corrigendum to “Rural road stimulus and the role of matching mandates on economic recovery in China” [J. Dev. Econ. 166, (January 2024), 103211]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1