Yansui Song, Shaoshan Sun, Chenggang Tao, Zhen He, Bin Xu
{"title":"基于事件的制导和增量控制在固定翼无人飞行器着陆机动中的应用","authors":"Yansui Song, Shaoshan Sun, Chenggang Tao, Zhen He, Bin Xu","doi":"10.1007/s10846-024-02063-w","DOIUrl":null,"url":null,"abstract":"<p>Considering the nonlinearity and unknown dynamics of fixed-wing unmanned aerial vehicles in perched landing maneuvers, an event-based online guidance and incremental control scheme is proposed. The guidance trajectory for perched landing must be dynamically feasible therefore an event-based trapezoidal collocation point optimization method is proposed. Introduction of the triggering mechanism for the rational use of computing resources to improve PL accuracy. Furthermore, a filter-based incremental nonlinear dynamic inverse (F-INDI) control with state transformation is proposed to achieve robust trajectory tracking under high angle of attack (AOA). The F-INDI uses low-pass filters to obtain incremental dynamics of the system, which simplifies the design process. The state transformation strategy is to convert the flight-path angle, AOA and velocity into two composite dynamics, which avoids the sign reversal problem of control gain under high AOA. The stability analysis shows that the original states can be controlled only by controlling the composite state. Simulation results show that the proposed scheme achieves high perched landing accuracy and a reliable trajectory tracking control.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"146 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-Based Guidance and Incremental Control with Application to Fixed-wing Unmanned Aerial Vehicle Perched Landing Maneuvers\",\"authors\":\"Yansui Song, Shaoshan Sun, Chenggang Tao, Zhen He, Bin Xu\",\"doi\":\"10.1007/s10846-024-02063-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Considering the nonlinearity and unknown dynamics of fixed-wing unmanned aerial vehicles in perched landing maneuvers, an event-based online guidance and incremental control scheme is proposed. The guidance trajectory for perched landing must be dynamically feasible therefore an event-based trapezoidal collocation point optimization method is proposed. Introduction of the triggering mechanism for the rational use of computing resources to improve PL accuracy. Furthermore, a filter-based incremental nonlinear dynamic inverse (F-INDI) control with state transformation is proposed to achieve robust trajectory tracking under high angle of attack (AOA). The F-INDI uses low-pass filters to obtain incremental dynamics of the system, which simplifies the design process. The state transformation strategy is to convert the flight-path angle, AOA and velocity into two composite dynamics, which avoids the sign reversal problem of control gain under high AOA. The stability analysis shows that the original states can be controlled only by controlling the composite state. Simulation results show that the proposed scheme achieves high perched landing accuracy and a reliable trajectory tracking control.</p>\",\"PeriodicalId\":54794,\"journal\":{\"name\":\"Journal of Intelligent & Robotic Systems\",\"volume\":\"146 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10846-024-02063-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02063-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Event-Based Guidance and Incremental Control with Application to Fixed-wing Unmanned Aerial Vehicle Perched Landing Maneuvers
Considering the nonlinearity and unknown dynamics of fixed-wing unmanned aerial vehicles in perched landing maneuvers, an event-based online guidance and incremental control scheme is proposed. The guidance trajectory for perched landing must be dynamically feasible therefore an event-based trapezoidal collocation point optimization method is proposed. Introduction of the triggering mechanism for the rational use of computing resources to improve PL accuracy. Furthermore, a filter-based incremental nonlinear dynamic inverse (F-INDI) control with state transformation is proposed to achieve robust trajectory tracking under high angle of attack (AOA). The F-INDI uses low-pass filters to obtain incremental dynamics of the system, which simplifies the design process. The state transformation strategy is to convert the flight-path angle, AOA and velocity into two composite dynamics, which avoids the sign reversal problem of control gain under high AOA. The stability analysis shows that the original states can be controlled only by controlling the composite state. Simulation results show that the proposed scheme achieves high perched landing accuracy and a reliable trajectory tracking control.
期刊介绍:
The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization.
On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc.
On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).