利用代理建模技术进行有限元模型更新的高效贝叶斯推理

IF 3.6 2区 工程技术 Q1 ENGINEERING, CIVIL Journal of Civil Structural Health Monitoring Pub Date : 2024-02-21 DOI:10.1007/s13349-024-00768-y
Qiang Li, Xiuli Du, Pinghe Ni, Qiang Han, Kun Xu, Zhishen Yuan
{"title":"利用代理建模技术进行有限元模型更新的高效贝叶斯推理","authors":"Qiang Li, Xiuli Du, Pinghe Ni, Qiang Han, Kun Xu, Zhishen Yuan","doi":"10.1007/s13349-024-00768-y","DOIUrl":null,"url":null,"abstract":"<p>Bayesian finite element model updating has become an important tool for structural health monitoring. However, it takes a large amount of computational cost to update the finite element model using the Bayesian inference methods. The surrogate modeling techniques have received much attention in recent years due to their ability to speed up the computation of Bayesian inference. This study introduces two new surrogate models for Bayesian inference. Specifically, the radial basis function neural networks and fully-connected neural networks are used to construct surrogate models for the intractable likelihood function, avoiding the enormous computational cost of repeatedly calling the finite element model in the Monte Carlo sampling process. A full-scale numerical simulation of a concrete frame and a six-story steel frame experiment were selected as case studies. The trained surrogate models were used for Bayesian model updating, and the updated results were compared with the results obtained directly using the finite element model evaluation. The posterior distributions of the finite element model parameters obtained using the trained surrogate models are sufficiently accurate compared to those obtained using direct finite element evaluation. In addition, using surrogate models for finite element model updating greatly reduces computational costs.</p>","PeriodicalId":48582,"journal":{"name":"Journal of Civil Structural Health Monitoring","volume":"8 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Bayesian inference for finite element model updating with surrogate modeling techniques\",\"authors\":\"Qiang Li, Xiuli Du, Pinghe Ni, Qiang Han, Kun Xu, Zhishen Yuan\",\"doi\":\"10.1007/s13349-024-00768-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bayesian finite element model updating has become an important tool for structural health monitoring. However, it takes a large amount of computational cost to update the finite element model using the Bayesian inference methods. The surrogate modeling techniques have received much attention in recent years due to their ability to speed up the computation of Bayesian inference. This study introduces two new surrogate models for Bayesian inference. Specifically, the radial basis function neural networks and fully-connected neural networks are used to construct surrogate models for the intractable likelihood function, avoiding the enormous computational cost of repeatedly calling the finite element model in the Monte Carlo sampling process. A full-scale numerical simulation of a concrete frame and a six-story steel frame experiment were selected as case studies. The trained surrogate models were used for Bayesian model updating, and the updated results were compared with the results obtained directly using the finite element model evaluation. The posterior distributions of the finite element model parameters obtained using the trained surrogate models are sufficiently accurate compared to those obtained using direct finite element evaluation. In addition, using surrogate models for finite element model updating greatly reduces computational costs.</p>\",\"PeriodicalId\":48582,\"journal\":{\"name\":\"Journal of Civil Structural Health Monitoring\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Civil Structural Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13349-024-00768-y\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Civil Structural Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13349-024-00768-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

贝叶斯有限元模型更新已成为结构健康监测的重要工具。然而,使用贝叶斯推理方法更新有限元模型需要大量的计算成本。近年来,代建模技术因其能够加快贝叶斯推理的计算速度而备受关注。本研究为贝叶斯推理引入了两种新的代用模型。具体而言,利用径向基函数神经网络和全连接神经网络为难以处理的似然函数构建代用模型,避免了蒙特卡罗采样过程中重复调用有限元模型的巨大计算成本。案例研究选择了混凝土框架的全尺寸数值模拟和六层钢框架实验。将训练好的代用模型用于贝叶斯模型更新,并将更新后的结果与直接使用有限元模型评估得到的结果进行比较。与直接使用有限元评估获得的结果相比,使用训练有素的代用模型获得的有限元模型参数后验分布足够精确。此外,使用代用模型进行有限元模型更新大大降低了计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Bayesian inference for finite element model updating with surrogate modeling techniques

Bayesian finite element model updating has become an important tool for structural health monitoring. However, it takes a large amount of computational cost to update the finite element model using the Bayesian inference methods. The surrogate modeling techniques have received much attention in recent years due to their ability to speed up the computation of Bayesian inference. This study introduces two new surrogate models for Bayesian inference. Specifically, the radial basis function neural networks and fully-connected neural networks are used to construct surrogate models for the intractable likelihood function, avoiding the enormous computational cost of repeatedly calling the finite element model in the Monte Carlo sampling process. A full-scale numerical simulation of a concrete frame and a six-story steel frame experiment were selected as case studies. The trained surrogate models were used for Bayesian model updating, and the updated results were compared with the results obtained directly using the finite element model evaluation. The posterior distributions of the finite element model parameters obtained using the trained surrogate models are sufficiently accurate compared to those obtained using direct finite element evaluation. In addition, using surrogate models for finite element model updating greatly reduces computational costs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Civil Structural Health Monitoring
Journal of Civil Structural Health Monitoring Engineering-Safety, Risk, Reliability and Quality
CiteScore
8.10
自引率
11.40%
发文量
105
期刊介绍: The Journal of Civil Structural Health Monitoring (JCSHM) publishes articles to advance the understanding and the application of health monitoring methods for the condition assessment and management of civil infrastructure systems. JCSHM serves as a focal point for sharing knowledge and experience in technologies impacting the discipline of Civionics and Civil Structural Health Monitoring, especially in terms of load capacity ratings and service life estimation.
期刊最新文献
Development and implementation of medium-fidelity physics-based model for hybrid digital twin-based damage identification of piping structures Innovated bridge health diagnosis model using bridge critical frequency ratio R–C–C fusion classifier for automatic damage detection of heritage building using 3D laser scanning An AIoT system for real-time monitoring and forecasting of railway temperature Environmental effects on the experimental modal parameters of masonry buildings: experiences from the Italian Seismic Observatory of Structures (OSS) network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1