Yuhao Wu , Nan Jiang , Yan Xu , Ta-Kang Yeh , Ao Guo , Tianhe Xu , Song Li , Zhaorui Gao
{"title":"基于ERA5和实时全球导航卫星系统的河南 \"7.20 \"特大暴雨水汽输送揭示","authors":"Yuhao Wu , Nan Jiang , Yan Xu , Ta-Kang Yeh , Ao Guo , Tianhe Xu , Song Li , Zhaorui Gao","doi":"10.1016/j.ejrs.2024.02.004","DOIUrl":null,"url":null,"abstract":"<div><p>In July 2021, a heavy rainstorm was sweeping across Henan Province, causing geological disasters such as floods, mudslides, and landslides, which seriously threatened the safety of human life and property. Precipitable water vapor (PWV) is related to the occurrence and scale of rainfall. Here, based on Global Navigation Satellite System (GNSS) observations, in-situ meteorological files (GMET), ephemeris products, ERA5 data, and weather station data, the relationship between PWV and rainstorm from July 1st to 30th was studied. The results show that GMET and ERA5 in July 2021 have high consistency in some stations, with a root mean square error (RMSE) for temperature below 1.6 °C, for pressure below 0.5 hPa, and for relative humidity below 9 %. During the week before the heavy rainstorm, the temperature dropped remarkably and the temperature difference decreased, while the relative humidity increased and the relative humidity difference decreased. Compared with ERA5 PWV, the RMSE of GNSS PWV retrieved using real-time ephemeris is 3.238 mm. Different from the normal rainfall, we found that the PWV variation during the Henan rainstorm experienced a unique “accumulation” period. We also observed a clear correlation between PWV and the rainstorm, both temporally and spatially. In addition, the PWV in the severely damaged area was 20 mm higher than the average value of the past decade. Ten days after the rainstorm, the surface of this area had subsided by 1.5–3 mm. Finally, we found that the topography of Henan, the low vortex, the north-biased subtropical high, and the double typhoons all played a role in the successful transport and deposition of water vapor.</p></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"27 2","pages":"Pages 165-177"},"PeriodicalIF":3.7000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110982324000103/pdfft?md5=0049c91b68f59488283cce188de947d5&pid=1-s2.0-S1110982324000103-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Revealing the water vapor transport during the Henan “7.20” heavy rainstorm based on ERA5 and Real-Time GNSS\",\"authors\":\"Yuhao Wu , Nan Jiang , Yan Xu , Ta-Kang Yeh , Ao Guo , Tianhe Xu , Song Li , Zhaorui Gao\",\"doi\":\"10.1016/j.ejrs.2024.02.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In July 2021, a heavy rainstorm was sweeping across Henan Province, causing geological disasters such as floods, mudslides, and landslides, which seriously threatened the safety of human life and property. Precipitable water vapor (PWV) is related to the occurrence and scale of rainfall. Here, based on Global Navigation Satellite System (GNSS) observations, in-situ meteorological files (GMET), ephemeris products, ERA5 data, and weather station data, the relationship between PWV and rainstorm from July 1st to 30th was studied. The results show that GMET and ERA5 in July 2021 have high consistency in some stations, with a root mean square error (RMSE) for temperature below 1.6 °C, for pressure below 0.5 hPa, and for relative humidity below 9 %. During the week before the heavy rainstorm, the temperature dropped remarkably and the temperature difference decreased, while the relative humidity increased and the relative humidity difference decreased. Compared with ERA5 PWV, the RMSE of GNSS PWV retrieved using real-time ephemeris is 3.238 mm. Different from the normal rainfall, we found that the PWV variation during the Henan rainstorm experienced a unique “accumulation” period. We also observed a clear correlation between PWV and the rainstorm, both temporally and spatially. In addition, the PWV in the severely damaged area was 20 mm higher than the average value of the past decade. Ten days after the rainstorm, the surface of this area had subsided by 1.5–3 mm. Finally, we found that the topography of Henan, the low vortex, the north-biased subtropical high, and the double typhoons all played a role in the successful transport and deposition of water vapor.</p></div>\",\"PeriodicalId\":48539,\"journal\":{\"name\":\"Egyptian Journal of Remote Sensing and Space Sciences\",\"volume\":\"27 2\",\"pages\":\"Pages 165-177\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1110982324000103/pdfft?md5=0049c91b68f59488283cce188de947d5&pid=1-s2.0-S1110982324000103-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Journal of Remote Sensing and Space Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110982324000103\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982324000103","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Revealing the water vapor transport during the Henan “7.20” heavy rainstorm based on ERA5 and Real-Time GNSS
In July 2021, a heavy rainstorm was sweeping across Henan Province, causing geological disasters such as floods, mudslides, and landslides, which seriously threatened the safety of human life and property. Precipitable water vapor (PWV) is related to the occurrence and scale of rainfall. Here, based on Global Navigation Satellite System (GNSS) observations, in-situ meteorological files (GMET), ephemeris products, ERA5 data, and weather station data, the relationship between PWV and rainstorm from July 1st to 30th was studied. The results show that GMET and ERA5 in July 2021 have high consistency in some stations, with a root mean square error (RMSE) for temperature below 1.6 °C, for pressure below 0.5 hPa, and for relative humidity below 9 %. During the week before the heavy rainstorm, the temperature dropped remarkably and the temperature difference decreased, while the relative humidity increased and the relative humidity difference decreased. Compared with ERA5 PWV, the RMSE of GNSS PWV retrieved using real-time ephemeris is 3.238 mm. Different from the normal rainfall, we found that the PWV variation during the Henan rainstorm experienced a unique “accumulation” period. We also observed a clear correlation between PWV and the rainstorm, both temporally and spatially. In addition, the PWV in the severely damaged area was 20 mm higher than the average value of the past decade. Ten days after the rainstorm, the surface of this area had subsided by 1.5–3 mm. Finally, we found that the topography of Henan, the low vortex, the north-biased subtropical high, and the double typhoons all played a role in the successful transport and deposition of water vapor.
期刊介绍:
The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.