{"title":"线性规划问题的不可行内部点弧线搜索法与涅斯捷罗夫重启策略","authors":"Einosuke Iida, Makoto Yamashita","doi":"10.1007/s10589-024-00561-z","DOIUrl":null,"url":null,"abstract":"<p>An arc-search interior-point method is a type of interior-point method that approximates the central path by an ellipsoidal arc, and it can often reduce the number of iterations. In this work, to further reduce the number of iterations and the computation time for solving linear programming problems, we propose two arc-search interior-point methods using Nesterov’s restarting strategy which is a well-known method to accelerate the gradient method with a momentum term. The first one generates a sequence of iterations in the neighborhood, and we prove that the proposed method converges to an optimal solution and that it is a polynomial-time method. The second one incorporates the concept of the Mehrotra-type interior-point method to improve numerical performance. The numerical experiments demonstrate that the second one reduced the number of iterations and the computational time compared to existing interior-point methods due to the momentum term.\n</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"142 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An infeasible interior-point arc-search method with Nesterov’s restarting strategy for linear programming problems\",\"authors\":\"Einosuke Iida, Makoto Yamashita\",\"doi\":\"10.1007/s10589-024-00561-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An arc-search interior-point method is a type of interior-point method that approximates the central path by an ellipsoidal arc, and it can often reduce the number of iterations. In this work, to further reduce the number of iterations and the computation time for solving linear programming problems, we propose two arc-search interior-point methods using Nesterov’s restarting strategy which is a well-known method to accelerate the gradient method with a momentum term. The first one generates a sequence of iterations in the neighborhood, and we prove that the proposed method converges to an optimal solution and that it is a polynomial-time method. The second one incorporates the concept of the Mehrotra-type interior-point method to improve numerical performance. The numerical experiments demonstrate that the second one reduced the number of iterations and the computational time compared to existing interior-point methods due to the momentum term.\\n</p>\",\"PeriodicalId\":55227,\"journal\":{\"name\":\"Computational Optimization and Applications\",\"volume\":\"142 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Optimization and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-024-00561-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00561-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An infeasible interior-point arc-search method with Nesterov’s restarting strategy for linear programming problems
An arc-search interior-point method is a type of interior-point method that approximates the central path by an ellipsoidal arc, and it can often reduce the number of iterations. In this work, to further reduce the number of iterations and the computation time for solving linear programming problems, we propose two arc-search interior-point methods using Nesterov’s restarting strategy which is a well-known method to accelerate the gradient method with a momentum term. The first one generates a sequence of iterations in the neighborhood, and we prove that the proposed method converges to an optimal solution and that it is a polynomial-time method. The second one incorporates the concept of the Mehrotra-type interior-point method to improve numerical performance. The numerical experiments demonstrate that the second one reduced the number of iterations and the computational time compared to existing interior-point methods due to the momentum term.
期刊介绍:
Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome.
Topics of interest include, but are not limited to the following:
Large Scale Optimization,
Unconstrained Optimization,
Linear Programming,
Quadratic Programming Complementarity Problems, and Variational Inequalities,
Constrained Optimization,
Nondifferentiable Optimization,
Integer Programming,
Combinatorial Optimization,
Stochastic Optimization,
Multiobjective Optimization,
Network Optimization,
Complexity Theory,
Approximations and Error Analysis,
Parametric Programming and Sensitivity Analysis,
Parallel Computing, Distributed Computing, and Vector Processing,
Software, Benchmarks, Numerical Experimentation and Comparisons,
Modelling Languages and Systems for Optimization,
Automatic Differentiation,
Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research,
Transportation, Economics, Communications, Manufacturing, and Management Science.