{"title":"用于纳米互连应用的热感知电路模型和 MLGNR 性能分析","authors":"Himanshu Sharma, Karmjit Singh Sandha","doi":"10.1007/s10470-024-02254-3","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores the influence of temperature on the scattering mechanism of multilayer graphene nanoribbon (MLGNR). A thermally aware electrical ESC model along with mathematical computations is presented for evaluating the parasitic and reports the performance analysis dependent on temperature of the MLGNR at global interconnect length for 16 nm, 22 nm, and 32 nm nodes of technology in terms of power dissipation, delay, and power delay product (PDP). It was examined that with rising temperature, there is a strident decrease in the mean free path of GNR interconnect, which further influence its own resistance at variable global lengths (500‒2000 μm) for all three technology nodes. The simulation program with integrated circuit (SPICE) emphasis simulation tool is used to estimate and compare the performance of MLGNR in terms of power dissipation, signal delay and PDP for three different nodes of technology. It is revealed from the outcomes that the propagation delay and PDP increase at long interconnects (2000 μm) over a temperature range of 200 to 500 K for deep submicron technology nodes (16, 22, and 32 nm). Further, based on ITRS 2013, the analytical and simulated results are obtained at global interconnect length (2000 μm) for 16 nm technology node in the 200–500 K temperature range of MLGNR. The simulation and analytical results show that the outcomes of the two models are very similar. The models' trends show an increase in delay with increasing temperature levels (200‒500 K) 16 nm technology node.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"120 1","pages":"71 - 81"},"PeriodicalIF":1.2000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermally-aware circuit model and performance analysis of MLGNR for nano-interconnect application\",\"authors\":\"Himanshu Sharma, Karmjit Singh Sandha\",\"doi\":\"10.1007/s10470-024-02254-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper explores the influence of temperature on the scattering mechanism of multilayer graphene nanoribbon (MLGNR). A thermally aware electrical ESC model along with mathematical computations is presented for evaluating the parasitic and reports the performance analysis dependent on temperature of the MLGNR at global interconnect length for 16 nm, 22 nm, and 32 nm nodes of technology in terms of power dissipation, delay, and power delay product (PDP). It was examined that with rising temperature, there is a strident decrease in the mean free path of GNR interconnect, which further influence its own resistance at variable global lengths (500‒2000 μm) for all three technology nodes. The simulation program with integrated circuit (SPICE) emphasis simulation tool is used to estimate and compare the performance of MLGNR in terms of power dissipation, signal delay and PDP for three different nodes of technology. It is revealed from the outcomes that the propagation delay and PDP increase at long interconnects (2000 μm) over a temperature range of 200 to 500 K for deep submicron technology nodes (16, 22, and 32 nm). Further, based on ITRS 2013, the analytical and simulated results are obtained at global interconnect length (2000 μm) for 16 nm technology node in the 200–500 K temperature range of MLGNR. The simulation and analytical results show that the outcomes of the two models are very similar. The models' trends show an increase in delay with increasing temperature levels (200‒500 K) 16 nm technology node.</p></div>\",\"PeriodicalId\":7827,\"journal\":{\"name\":\"Analog Integrated Circuits and Signal Processing\",\"volume\":\"120 1\",\"pages\":\"71 - 81\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analog Integrated Circuits and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10470-024-02254-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-024-02254-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Thermally-aware circuit model and performance analysis of MLGNR for nano-interconnect application
This paper explores the influence of temperature on the scattering mechanism of multilayer graphene nanoribbon (MLGNR). A thermally aware electrical ESC model along with mathematical computations is presented for evaluating the parasitic and reports the performance analysis dependent on temperature of the MLGNR at global interconnect length for 16 nm, 22 nm, and 32 nm nodes of technology in terms of power dissipation, delay, and power delay product (PDP). It was examined that with rising temperature, there is a strident decrease in the mean free path of GNR interconnect, which further influence its own resistance at variable global lengths (500‒2000 μm) for all three technology nodes. The simulation program with integrated circuit (SPICE) emphasis simulation tool is used to estimate and compare the performance of MLGNR in terms of power dissipation, signal delay and PDP for three different nodes of technology. It is revealed from the outcomes that the propagation delay and PDP increase at long interconnects (2000 μm) over a temperature range of 200 to 500 K for deep submicron technology nodes (16, 22, and 32 nm). Further, based on ITRS 2013, the analytical and simulated results are obtained at global interconnect length (2000 μm) for 16 nm technology node in the 200–500 K temperature range of MLGNR. The simulation and analytical results show that the outcomes of the two models are very similar. The models' trends show an increase in delay with increasing temperature levels (200‒500 K) 16 nm technology node.
期刊介绍:
Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today.
A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.