蛋白巴豆酰化通过 PI3K-AKT 通路促进牙周韧带干细胞的成骨分化。

IF 4 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY STEM CELLS Pub Date : 2024-07-08 DOI:10.1093/stmcls/sxae018
Ruohui Han, Rui Dang, Fan Liu, Shaochen Nie, Shaofei Tao, Liangyu Xing, Tianle Yang, Meilin Hu, Dayong Liu
{"title":"蛋白巴豆酰化通过 PI3K-AKT 通路促进牙周韧带干细胞的成骨分化。","authors":"Ruohui Han, Rui Dang, Fan Liu, Shaochen Nie, Shaofei Tao, Liangyu Xing, Tianle Yang, Meilin Hu, Dayong Liu","doi":"10.1093/stmcls/sxae018","DOIUrl":null,"url":null,"abstract":"<p><p>Posttranslational modifications (PTMs) are crucial regulatory mechanisms for cellular differentiation and organismal development. Acylation modification is one of the main PTMs that plays a pivotal role in regulating the osteogenic differentiation of mesenchymal stem cells and is a focal point of research in bone tissue regeneration. However, its mechanism remains incompletely understood. This article aims to investigate the impact of protein crotonylation on osteogenic differentiation in periodontal ligament stem cells (PDLSCs) and elucidate its underlying mechanisms. Western blot analysis identified that the modification level of acetylation, crotonylation, and succinylation were significantly upregulated after osteogenic induction of PDLSCs. Subsequently, sodium crotonate (NaCr) was added to the medium and acyl-CoA synthetase short-chain family member 2 (ACSS2) was knocked down by short hairpin RNA plasmids to regulate the total level of protein crotonylation. The results indicated that treatment with NaCr promoted the expression of osteogenic differentiation-related factors in PDLSCs, whereas silencing ACSS2 had the opposite effect. In addition, mass spectrometry analysis was used to investigate the comprehensive analysis of proteome-wide crotonylation in PDLSCs under osteogenic differentiation. The analysis revealed that the level of protein crotonylation related to the PI3K-AKT signaling pathway was significantly upregulated in PDLSCs after osteogenic induction. Treatment with NaCr and silencing ACSS2 affected the activation of the PI3K-AKT signaling pathway. Collectively, our study demonstrates that protein crotonylation promotes osteogenic differentiation of PDLSCs via the PI3K-AKT pathway, providing a novel targeting therapeutic approach for bone tissue regeneration.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein Crotonylation Promotes Osteogenic Differentiation of Periodontal Ligament Stem Cells via the PI3K-AKT Pathway.\",\"authors\":\"Ruohui Han, Rui Dang, Fan Liu, Shaochen Nie, Shaofei Tao, Liangyu Xing, Tianle Yang, Meilin Hu, Dayong Liu\",\"doi\":\"10.1093/stmcls/sxae018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Posttranslational modifications (PTMs) are crucial regulatory mechanisms for cellular differentiation and organismal development. Acylation modification is one of the main PTMs that plays a pivotal role in regulating the osteogenic differentiation of mesenchymal stem cells and is a focal point of research in bone tissue regeneration. However, its mechanism remains incompletely understood. This article aims to investigate the impact of protein crotonylation on osteogenic differentiation in periodontal ligament stem cells (PDLSCs) and elucidate its underlying mechanisms. Western blot analysis identified that the modification level of acetylation, crotonylation, and succinylation were significantly upregulated after osteogenic induction of PDLSCs. Subsequently, sodium crotonate (NaCr) was added to the medium and acyl-CoA synthetase short-chain family member 2 (ACSS2) was knocked down by short hairpin RNA plasmids to regulate the total level of protein crotonylation. The results indicated that treatment with NaCr promoted the expression of osteogenic differentiation-related factors in PDLSCs, whereas silencing ACSS2 had the opposite effect. In addition, mass spectrometry analysis was used to investigate the comprehensive analysis of proteome-wide crotonylation in PDLSCs under osteogenic differentiation. The analysis revealed that the level of protein crotonylation related to the PI3K-AKT signaling pathway was significantly upregulated in PDLSCs after osteogenic induction. Treatment with NaCr and silencing ACSS2 affected the activation of the PI3K-AKT signaling pathway. Collectively, our study demonstrates that protein crotonylation promotes osteogenic differentiation of PDLSCs via the PI3K-AKT pathway, providing a novel targeting therapeutic approach for bone tissue regeneration.</p>\",\"PeriodicalId\":231,\"journal\":{\"name\":\"STEM CELLS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"STEM CELLS\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/stmcls/sxae018\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxae018","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

翻译后修饰是细胞分化和机体发育的重要调控机制。酰化修饰是主要的翻译后修饰之一,在调节间充质干细胞的成骨分化过程中发挥着关键作用,是骨组织再生研究的一个焦点。然而,人们对其机理的了解仍不全面。本文旨在研究蛋白质巴豆酰化对牙周韧带干细胞(PDLSCs)成骨分化的影响,并阐明其潜在机制。Western 印迹分析发现,诱导 PDLSCs 成骨后,乙酰化、巴豆酸钠和琥珀酰化的修饰水平显著上调。随后,在培养基中加入巴豆酸钠(NaCr),并通过短发夹RNA质粒敲除酰基-CoA合成酶短链家族成员2(ACSS2)来调控蛋白质巴豆酰化的总水平。结果表明,用NaCr处理可促进PDLSCs中成骨细胞分化相关因子的表达,而沉默ACSS2则会产生相反的效果。此外,质谱分析还用于全面分析成骨分化过程中 PDLSCs 蛋白质全范围的巴豆酰化。分析结果显示,成骨诱导后,PDLSCs 中与 PI3K-AKT 信号通路相关的蛋白质巴豆酰化水平显著上调。用 NaCr 处理和沉默 ACSS2 会影响 PI3K-AKT 信号通路的激活。总之,我们的研究表明蛋白质巴豆酰化可通过PI3K-AKT途径促进PDLSCs的成骨分化,为骨组织再生提供了一种新的靶向治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Protein Crotonylation Promotes Osteogenic Differentiation of Periodontal Ligament Stem Cells via the PI3K-AKT Pathway.

Posttranslational modifications (PTMs) are crucial regulatory mechanisms for cellular differentiation and organismal development. Acylation modification is one of the main PTMs that plays a pivotal role in regulating the osteogenic differentiation of mesenchymal stem cells and is a focal point of research in bone tissue regeneration. However, its mechanism remains incompletely understood. This article aims to investigate the impact of protein crotonylation on osteogenic differentiation in periodontal ligament stem cells (PDLSCs) and elucidate its underlying mechanisms. Western blot analysis identified that the modification level of acetylation, crotonylation, and succinylation were significantly upregulated after osteogenic induction of PDLSCs. Subsequently, sodium crotonate (NaCr) was added to the medium and acyl-CoA synthetase short-chain family member 2 (ACSS2) was knocked down by short hairpin RNA plasmids to regulate the total level of protein crotonylation. The results indicated that treatment with NaCr promoted the expression of osteogenic differentiation-related factors in PDLSCs, whereas silencing ACSS2 had the opposite effect. In addition, mass spectrometry analysis was used to investigate the comprehensive analysis of proteome-wide crotonylation in PDLSCs under osteogenic differentiation. The analysis revealed that the level of protein crotonylation related to the PI3K-AKT signaling pathway was significantly upregulated in PDLSCs after osteogenic induction. Treatment with NaCr and silencing ACSS2 affected the activation of the PI3K-AKT signaling pathway. Collectively, our study demonstrates that protein crotonylation promotes osteogenic differentiation of PDLSCs via the PI3K-AKT pathway, providing a novel targeting therapeutic approach for bone tissue regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
STEM CELLS
STEM CELLS 医学-生物工程与应用微生物
CiteScore
10.30
自引率
1.90%
发文量
104
审稿时长
3 months
期刊介绍: STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology. STEM CELLS covers: Cancer Stem Cells, Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells, Regenerative Medicine, Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics, Tissue-Specific Stem Cells, Translational and Clinical Research.
期刊最新文献
The Global Evolution and Impact of Systems Biology and Artificial Intelligence in Stem Cell Research and Therapeutics Development: A Scoping Review. Immunomodulatory potential of cytokine-licensed human bone marrow-derived mesenchymal stromal cells correlates with potency marker expression profile. Derivation of Dental Epithelial-like Cells from Murine Embryonic Stem Cells for Tooth Regeneration. Integrin-linked kinase control dental pulp stem cell senescence via the mTOR signaling pathway. Single-cell RNA sequencing reveals vascularization-associated cell subpopulations in dental pulp: PDGFRβ+ DPSCs with activated PI3K/AKT pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1