对人类癌症中受 p53 调控的长非编码 RNA 进行系统分析后发现,不同肿瘤类型之间存在显著的异质性。

IF 4.1 2区 医学 Q2 CELL BIOLOGY Molecular Cancer Research Pub Date : 2024-06-04 DOI:10.1158/1541-7786.MCR-23-0295
Kausik Regunath, Vitalay Fomin, Zhaoqi Liu, Pingzhang Wang, Mainul Hoque, Bin Tian, Raul Rabadan, Carol Prives
{"title":"对人类癌症中受 p53 调控的长非编码 RNA 进行系统分析后发现,不同肿瘤类型之间存在显著的异质性。","authors":"Kausik Regunath, Vitalay Fomin, Zhaoqi Liu, Pingzhang Wang, Mainul Hoque, Bin Tian, Raul Rabadan, Carol Prives","doi":"10.1158/1541-7786.MCR-23-0295","DOIUrl":null,"url":null,"abstract":"<p><p>The p53 tumor suppressor protein, a sequence-specific DNA binding transcription factor, regulates the expression of a large number of genes, in response to various forms of cellular stress. Although the protein coding target genes of p53 have been well studied, less is known about its role in regulating long noncoding genes and their functional relevance to cancer. Here we report the genome-wide identification of a large set (>1,000) of long noncoding RNAs (lncRNA), which are putative p53 targets in a colon cancer cell line and in human patient datasets from five different common types of cancer. These lncRNAs have not been annotated by other studies of normal unstressed systems. In the colon cancer cell line, a high proportion of these lncRNAs are uniquely induced by different chemotherapeutic agents that activate p53, whereas others are induced by more than one agent tested. Further, subsets of these lncRNAs independently predict overall and disease-free survival of patients across the five different common cancer types. Interestingly, both genetic alterations and patient survival associated with different lncRNAs are unique to each cancer tested, indicating extraordinary tissue-specific variability in the p53 noncoding response. The newly identified noncoding p53 target genes have allowed us to construct a classifier for tumor diagnosis and prognosis.</p><p><strong>Implications: </strong>Our results not only identify myriad p53-regulated long noncoding (lncRNA), they also reveal marked drug-induced, as well as tissue- and tumor-specific heterogeneity in these putative p53 targets and our findings have enabled the construction of robust classifiers for diagnosis and prognosis.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic Characterization of p53-Regulated Long Noncoding RNAs across Human Cancers Reveals Remarkable Heterogeneity among Different Tumor Types.\",\"authors\":\"Kausik Regunath, Vitalay Fomin, Zhaoqi Liu, Pingzhang Wang, Mainul Hoque, Bin Tian, Raul Rabadan, Carol Prives\",\"doi\":\"10.1158/1541-7786.MCR-23-0295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The p53 tumor suppressor protein, a sequence-specific DNA binding transcription factor, regulates the expression of a large number of genes, in response to various forms of cellular stress. Although the protein coding target genes of p53 have been well studied, less is known about its role in regulating long noncoding genes and their functional relevance to cancer. Here we report the genome-wide identification of a large set (>1,000) of long noncoding RNAs (lncRNA), which are putative p53 targets in a colon cancer cell line and in human patient datasets from five different common types of cancer. These lncRNAs have not been annotated by other studies of normal unstressed systems. In the colon cancer cell line, a high proportion of these lncRNAs are uniquely induced by different chemotherapeutic agents that activate p53, whereas others are induced by more than one agent tested. Further, subsets of these lncRNAs independently predict overall and disease-free survival of patients across the five different common cancer types. Interestingly, both genetic alterations and patient survival associated with different lncRNAs are unique to each cancer tested, indicating extraordinary tissue-specific variability in the p53 noncoding response. The newly identified noncoding p53 target genes have allowed us to construct a classifier for tumor diagnosis and prognosis.</p><p><strong>Implications: </strong>Our results not only identify myriad p53-regulated long noncoding (lncRNA), they also reveal marked drug-induced, as well as tissue- and tumor-specific heterogeneity in these putative p53 targets and our findings have enabled the construction of robust classifiers for diagnosis and prognosis.</p>\",\"PeriodicalId\":19095,\"journal\":{\"name\":\"Molecular Cancer Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/1541-7786.MCR-23-0295\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-23-0295","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

p53 肿瘤抑制蛋白是一种序列特异的 DNA 结合转录因子,可调节大量基因的表达,以应对各种形式的细胞压力。虽然对 p53 的蛋白编码靶基因研究得很透彻,但对其在调控长非编码基因方面的作用及其与癌症的功能相关性却知之甚少。在这里,我们报告了在结肠癌细胞系和来自五种不同常见癌症类型的人类患者数据集中,在全基因组范围内鉴定出了一大组(超过 1000 个)长非编码 RNA(lncRNA),这些长非编码 RNA 是 p53 的假定靶标。这些 lncRNAs 尚未在其他对正常非应激系统的研究中得到注释。在结肠癌细胞系中,这些lncRNA中有很大一部分被不同的激活p53的化疗药物独特地诱导,而另一些则被不止一种测试药物诱导。此外,这些 lncRNAs 的子集可独立预测五种不同常见癌症类型患者的总生存期和无病生存期。有趣的是,与不同lncRNA相关的基因改变和患者生存率在每种受测癌症中都是独一无二的,这表明p53非编码反应具有非同寻常的组织特异性。新发现的非编码 p53 靶基因使我们能够构建一个用于肿瘤诊断和预后的分类器。意义:我们的研究结果不仅发现了无数p53调控的lncRNAs,还揭示了这些假定的p53靶点在药物诱导以及组织和肿瘤特异性方面的显著异质性,我们的研究结果有助于构建用于诊断和预后的稳健分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Systematic Characterization of p53-Regulated Long Noncoding RNAs across Human Cancers Reveals Remarkable Heterogeneity among Different Tumor Types.

The p53 tumor suppressor protein, a sequence-specific DNA binding transcription factor, regulates the expression of a large number of genes, in response to various forms of cellular stress. Although the protein coding target genes of p53 have been well studied, less is known about its role in regulating long noncoding genes and their functional relevance to cancer. Here we report the genome-wide identification of a large set (>1,000) of long noncoding RNAs (lncRNA), which are putative p53 targets in a colon cancer cell line and in human patient datasets from five different common types of cancer. These lncRNAs have not been annotated by other studies of normal unstressed systems. In the colon cancer cell line, a high proportion of these lncRNAs are uniquely induced by different chemotherapeutic agents that activate p53, whereas others are induced by more than one agent tested. Further, subsets of these lncRNAs independently predict overall and disease-free survival of patients across the five different common cancer types. Interestingly, both genetic alterations and patient survival associated with different lncRNAs are unique to each cancer tested, indicating extraordinary tissue-specific variability in the p53 noncoding response. The newly identified noncoding p53 target genes have allowed us to construct a classifier for tumor diagnosis and prognosis.

Implications: Our results not only identify myriad p53-regulated long noncoding (lncRNA), they also reveal marked drug-induced, as well as tissue- and tumor-specific heterogeneity in these putative p53 targets and our findings have enabled the construction of robust classifiers for diagnosis and prognosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Cancer Research
Molecular Cancer Research 医学-细胞生物学
CiteScore
9.90
自引率
0.00%
发文量
280
审稿时长
4-8 weeks
期刊介绍: Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.
期刊最新文献
Ubiquitin Ligase TRIM22 Inhibits Ovarian Cancer Malignancy via TCF4 Degradation. RNA-Binding Protein Lin28B Promotes Chronic Myeloid Leukemia Blast Crisis by Transcriptionally Upregulating miR-181d. Lactate Induces Tumor Progression via LAR Motif-Dependent Yin-Yang 1 Degradation. Characterization of Wnt Signaling Pathway Aberrations in Metastatic Prostate Cancer. NAPRT Silencing in FH-Deficient Renal Cell Carcinoma Confers Therapeutic Vulnerabilities via NAD+ Depletion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1