利用深度生成模型进行单细胞共定位分析

Yasuhiro Kojima, Shinji Mii, Shuto Hayashi, Haruka Hirose, Masato Ishikawa, Masashi Akiyama, Atsushi Enomoto, Teppei Shimamura
{"title":"利用深度生成模型进行单细胞共定位分析","authors":"Yasuhiro Kojima, Shinji Mii, Shuto Hayashi, Haruka Hirose, Masato Ishikawa, Masashi Akiyama, Atsushi Enomoto, Teppei Shimamura","doi":"10.1016/j.cels.2024.01.007","DOIUrl":null,"url":null,"abstract":"<p><p>Analyzing colocalization of single cells with heterogeneous molecular phenotypes is essential for understanding cell-cell interactions, and cellular responses to external stimuli and their biological functions in diseases and tissues. However, existing computational methodologies identified the colocalization patterns between predefined cell populations, which can obscure the molecular signatures arising from intercellular communication. Here, we introduce DeepCOLOR, a computational framework based on a deep generative model that recovers intercellular colocalization networks with single-cell resolution by the integration of single-cell and spatial transcriptomes. Along with colocalized population detection accuracy that is superior to existing methods in simulated dataset, DeepCOLOR identified plausible cell-cell interaction candidates between colocalized single cells and segregated cell populations defined by the colocalization relationships in mouse brain tissues, human squamous cell carcinoma samples, and human lung tissues infected with SARS-CoV-2. DeepCOLOR is applicable to studying cell-cell interactions behind various spatial niches. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell colocalization analysis using a deep generative model.\",\"authors\":\"Yasuhiro Kojima, Shinji Mii, Shuto Hayashi, Haruka Hirose, Masato Ishikawa, Masashi Akiyama, Atsushi Enomoto, Teppei Shimamura\",\"doi\":\"10.1016/j.cels.2024.01.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Analyzing colocalization of single cells with heterogeneous molecular phenotypes is essential for understanding cell-cell interactions, and cellular responses to external stimuli and their biological functions in diseases and tissues. However, existing computational methodologies identified the colocalization patterns between predefined cell populations, which can obscure the molecular signatures arising from intercellular communication. Here, we introduce DeepCOLOR, a computational framework based on a deep generative model that recovers intercellular colocalization networks with single-cell resolution by the integration of single-cell and spatial transcriptomes. Along with colocalized population detection accuracy that is superior to existing methods in simulated dataset, DeepCOLOR identified plausible cell-cell interaction candidates between colocalized single cells and segregated cell populations defined by the colocalization relationships in mouse brain tissues, human squamous cell carcinoma samples, and human lung tissues infected with SARS-CoV-2. DeepCOLOR is applicable to studying cell-cell interactions behind various spatial niches. A record of this paper's transparent peer review process is included in the supplemental information.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2024.01.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.01.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分析具有异质分子表型的单细胞的共定位对于了解细胞-细胞相互作用、细胞对外界刺激的反应及其在疾病和组织中的生物功能至关重要。然而,现有的计算方法识别的是预定义细胞群之间的共聚焦模式,这可能会掩盖细胞间通信产生的分子特征。在这里,我们介绍了 DeepCOLOR,这是一种基于深度生成模型的计算框架,通过整合单细胞和空间转录组,以单细胞分辨率恢复细胞间的共定位网络。在模拟数据集中,DeepCOLOR 的共定位群体检测准确率优于现有方法,同时还在小鼠脑组织、人类鳞状细胞癌样本和感染 SARS-CoV-2 的人类肺组织中发现了共定位单细胞与由共定位关系定义的分离细胞群体之间似是而非的细胞-细胞相互作用候选者。DeepCOLOR 适用于研究各种空间龛位背后的细胞-细胞相互作用。本论文的同行评审过程透明,记录见补充信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single-cell colocalization analysis using a deep generative model.

Analyzing colocalization of single cells with heterogeneous molecular phenotypes is essential for understanding cell-cell interactions, and cellular responses to external stimuli and their biological functions in diseases and tissues. However, existing computational methodologies identified the colocalization patterns between predefined cell populations, which can obscure the molecular signatures arising from intercellular communication. Here, we introduce DeepCOLOR, a computational framework based on a deep generative model that recovers intercellular colocalization networks with single-cell resolution by the integration of single-cell and spatial transcriptomes. Along with colocalized population detection accuracy that is superior to existing methods in simulated dataset, DeepCOLOR identified plausible cell-cell interaction candidates between colocalized single cells and segregated cell populations defined by the colocalization relationships in mouse brain tissues, human squamous cell carcinoma samples, and human lung tissues infected with SARS-CoV-2. DeepCOLOR is applicable to studying cell-cell interactions behind various spatial niches. A record of this paper's transparent peer review process is included in the supplemental information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plausible, robust biological oscillations through allelic buffering. Markov field network model of multi-modal data predicts effects of immune system perturbations on intravenous BCG vaccination in macaques. Automated single-cell omics end-to-end framework with data-driven batch inference. Entrainment and multi-stability of the p53 oscillator in human cells. Protein turnover regulation is critical for influenza A virus infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1