{"title":"通过三维打印多功能屈曲关节增强软机器人抓手、手和爬行机器人的多功能性和性能。","authors":"Chih-Wen Ou Yang, Shao-Yi Yu, Che-Wei Chan, Chien-Yao Tseng, Jing-Fang Cai, Han-Pang Huang, Jia-Yang Juang","doi":"10.1089/soro.2023.0111","DOIUrl":null,"url":null,"abstract":"<p><p>Soft robotic grippers and hands offer adaptability, lightweight construction, and enhanced safety in human-robot interactions. In this study, we introduce vacuum-actuated soft robotic finger joints to overcome their limitations in stiffness, response, and load-carrying capability. Our design-optimized through parametric design and three-dimensional (3D) printing-achieves high stiffness using vacuum pressure and a buckling mechanism for large bending angles (>90°) and rapid response times (0.24 s). We develop a theoretical model and nonlinear finite-element simulations to validate the experimental results and provide valuable insights into the underlying mechanics and visualization of the deformation and stress field. We showcase versatile applications of the buckling joints: a three-finger gripper with a large lifting ratio (∼96), a five-finger robotic hand capable of replicating human gestures and adeptly grasping objects of various characteristics in static and dynamic scenarios, and a planar-crawling robot carrying loads 30 times its weight at 0.89 body length per second (BL/s). In addition, a jellyfish-inspired robot crawls in circular pipes at 0.47 BL/s. By enhancing soft robotic grippers' functionality and performance, our study expands their applications and paves the way for innovation through 3D-printed multifunctional buckling joints.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"741-754"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Versatility and Performance of Soft Robotic Grippers, Hands, and Crawling Robots Through Three-Dimensional-Printed Multifunctional Buckling Joints.\",\"authors\":\"Chih-Wen Ou Yang, Shao-Yi Yu, Che-Wei Chan, Chien-Yao Tseng, Jing-Fang Cai, Han-Pang Huang, Jia-Yang Juang\",\"doi\":\"10.1089/soro.2023.0111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soft robotic grippers and hands offer adaptability, lightweight construction, and enhanced safety in human-robot interactions. In this study, we introduce vacuum-actuated soft robotic finger joints to overcome their limitations in stiffness, response, and load-carrying capability. Our design-optimized through parametric design and three-dimensional (3D) printing-achieves high stiffness using vacuum pressure and a buckling mechanism for large bending angles (>90°) and rapid response times (0.24 s). We develop a theoretical model and nonlinear finite-element simulations to validate the experimental results and provide valuable insights into the underlying mechanics and visualization of the deformation and stress field. We showcase versatile applications of the buckling joints: a three-finger gripper with a large lifting ratio (∼96), a five-finger robotic hand capable of replicating human gestures and adeptly grasping objects of various characteristics in static and dynamic scenarios, and a planar-crawling robot carrying loads 30 times its weight at 0.89 body length per second (BL/s). In addition, a jellyfish-inspired robot crawls in circular pipes at 0.47 BL/s. By enhancing soft robotic grippers' functionality and performance, our study expands their applications and paves the way for innovation through 3D-printed multifunctional buckling joints.</p>\",\"PeriodicalId\":94210,\"journal\":{\"name\":\"Soft robotics\",\"volume\":\" \",\"pages\":\"741-754\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2023.0111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2023.0111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing the Versatility and Performance of Soft Robotic Grippers, Hands, and Crawling Robots Through Three-Dimensional-Printed Multifunctional Buckling Joints.
Soft robotic grippers and hands offer adaptability, lightweight construction, and enhanced safety in human-robot interactions. In this study, we introduce vacuum-actuated soft robotic finger joints to overcome their limitations in stiffness, response, and load-carrying capability. Our design-optimized through parametric design and three-dimensional (3D) printing-achieves high stiffness using vacuum pressure and a buckling mechanism for large bending angles (>90°) and rapid response times (0.24 s). We develop a theoretical model and nonlinear finite-element simulations to validate the experimental results and provide valuable insights into the underlying mechanics and visualization of the deformation and stress field. We showcase versatile applications of the buckling joints: a three-finger gripper with a large lifting ratio (∼96), a five-finger robotic hand capable of replicating human gestures and adeptly grasping objects of various characteristics in static and dynamic scenarios, and a planar-crawling robot carrying loads 30 times its weight at 0.89 body length per second (BL/s). In addition, a jellyfish-inspired robot crawls in circular pipes at 0.47 BL/s. By enhancing soft robotic grippers' functionality and performance, our study expands their applications and paves the way for innovation through 3D-printed multifunctional buckling joints.