Timo Stein , Simon van Gaal , Johannes J. Fahrenfort
{"title":"如何(不)证明无意识引物:克服事后数据选择、低功率和频数统计等问题","authors":"Timo Stein , Simon van Gaal , Johannes J. Fahrenfort","doi":"10.1016/j.concog.2024.103669","DOIUrl":null,"url":null,"abstract":"<div><p>One widely used scientific approach to studying consciousness involves contrasting conscious operations with unconscious ones. However, challenges in establishing the absence of conscious awareness have led to debates about the extent and existence of unconscious processes. We collected experimental data on unconscious semantic priming, manipulating prime presentation duration to highlight the critical role of the analysis approach in attributing priming effects to unconscious processing. We demonstrate that common practices like post-hoc data selection, low statistical power, and frequentist statistical testing can erroneously support claims of unconscious priming. Conversely, adopting best practices like direct performance-awareness contrasts, Bayesian tests, and increased statistical power can prevent such erroneous conclusions. Many past experiments, including our own, fail to meet these standards, casting doubt on previous claims about unconscious processing. Implementing these robust practices will enhance our understanding of unconscious processing and shed light on the functions and neural mechanisms of consciousness.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1053810024000369/pdfft?md5=ce5d8c8e8511451b1f8b569f2766d025&pid=1-s2.0-S1053810024000369-main.pdf","citationCount":"0","resultStr":"{\"title\":\"How (not) to demonstrate unconscious priming: Overcoming issues with post-hoc data selection, low power, and frequentist statistics\",\"authors\":\"Timo Stein , Simon van Gaal , Johannes J. Fahrenfort\",\"doi\":\"10.1016/j.concog.2024.103669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One widely used scientific approach to studying consciousness involves contrasting conscious operations with unconscious ones. However, challenges in establishing the absence of conscious awareness have led to debates about the extent and existence of unconscious processes. We collected experimental data on unconscious semantic priming, manipulating prime presentation duration to highlight the critical role of the analysis approach in attributing priming effects to unconscious processing. We demonstrate that common practices like post-hoc data selection, low statistical power, and frequentist statistical testing can erroneously support claims of unconscious priming. Conversely, adopting best practices like direct performance-awareness contrasts, Bayesian tests, and increased statistical power can prevent such erroneous conclusions. Many past experiments, including our own, fail to meet these standards, casting doubt on previous claims about unconscious processing. Implementing these robust practices will enhance our understanding of unconscious processing and shed light on the functions and neural mechanisms of consciousness.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1053810024000369/pdfft?md5=ce5d8c8e8511451b1f8b569f2766d025&pid=1-s2.0-S1053810024000369-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1053810024000369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053810024000369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
How (not) to demonstrate unconscious priming: Overcoming issues with post-hoc data selection, low power, and frequentist statistics
One widely used scientific approach to studying consciousness involves contrasting conscious operations with unconscious ones. However, challenges in establishing the absence of conscious awareness have led to debates about the extent and existence of unconscious processes. We collected experimental data on unconscious semantic priming, manipulating prime presentation duration to highlight the critical role of the analysis approach in attributing priming effects to unconscious processing. We demonstrate that common practices like post-hoc data selection, low statistical power, and frequentist statistical testing can erroneously support claims of unconscious priming. Conversely, adopting best practices like direct performance-awareness contrasts, Bayesian tests, and increased statistical power can prevent such erroneous conclusions. Many past experiments, including our own, fail to meet these standards, casting doubt on previous claims about unconscious processing. Implementing these robust practices will enhance our understanding of unconscious processing and shed light on the functions and neural mechanisms of consciousness.