{"title":"利用最优控制预测模拟研究疲劳动态与任务完成之间的相互作用","authors":"P. Puchaud , B. Michaud , M. Begon","doi":"10.1016/j.humov.2024.103182","DOIUrl":null,"url":null,"abstract":"<div><p>Predictive simulation of human motion could provide insight into optimal techniques. In repetitive or long-duration tasks, these simulations must predict fatigue-induced adaptation. However, most studies minimize cost function terms related to actuator activations, assuming it minimizes fatigue. An additional modeling layer is needed to consider the previous use of muscles to reveal adaptive strategies to the decreased force production capability. Here, we propose interfacing Xia's three-compartment fatigue dynamics model with rigid-body dynamics. A stabilization invariant was added to Xia's model. We simulated the maximum repetition of dumbbell biceps curls as an optimal control problem (OCP) using direct multiple shooting. We explored three cost functions (minimizing torque, fatigue, or both) and two OCP formulations (full-horizon and sliding-horizon approaches). We adapted Xia's model by adding a stabilization invariant coefficients <span><math><mi>S</mi><mo>=</mo><mfenced><mn>10</mn><mn>5</mn></mfenced></math></span> for direct multiple shooting. Sliding-horizon OCPs achieved 20 to 21 repetitions. The kinematic strategy slowly deviated from a plausible dumbbell lifting task to a swinging strategy as fatigue onset increasingly compromised the humerus to remain vertical. In full-horizon OCPs, the latter kinematic strategy was used over the whole motion, resulting in 32 repetitions. We showed that sliding-horizon OCPs revealed a reactive strategy to fatigue when only torque was included in the cost function, whereas an anticipatory strategy was revealed when the fatigue term was included in the cost function. Overall, the proposed approach has the potential to be a valuable tool in optimizing performance and helping reduce fatigue-related injuries in a variety of fields.</p></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":"94 ","pages":"Article 103182"},"PeriodicalIF":1.6000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The interplay of fatigue dynamics and task achievement using optimal control predictive simulation\",\"authors\":\"P. Puchaud , B. Michaud , M. Begon\",\"doi\":\"10.1016/j.humov.2024.103182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Predictive simulation of human motion could provide insight into optimal techniques. In repetitive or long-duration tasks, these simulations must predict fatigue-induced adaptation. However, most studies minimize cost function terms related to actuator activations, assuming it minimizes fatigue. An additional modeling layer is needed to consider the previous use of muscles to reveal adaptive strategies to the decreased force production capability. Here, we propose interfacing Xia's three-compartment fatigue dynamics model with rigid-body dynamics. A stabilization invariant was added to Xia's model. We simulated the maximum repetition of dumbbell biceps curls as an optimal control problem (OCP) using direct multiple shooting. We explored three cost functions (minimizing torque, fatigue, or both) and two OCP formulations (full-horizon and sliding-horizon approaches). We adapted Xia's model by adding a stabilization invariant coefficients <span><math><mi>S</mi><mo>=</mo><mfenced><mn>10</mn><mn>5</mn></mfenced></math></span> for direct multiple shooting. Sliding-horizon OCPs achieved 20 to 21 repetitions. The kinematic strategy slowly deviated from a plausible dumbbell lifting task to a swinging strategy as fatigue onset increasingly compromised the humerus to remain vertical. In full-horizon OCPs, the latter kinematic strategy was used over the whole motion, resulting in 32 repetitions. We showed that sliding-horizon OCPs revealed a reactive strategy to fatigue when only torque was included in the cost function, whereas an anticipatory strategy was revealed when the fatigue term was included in the cost function. Overall, the proposed approach has the potential to be a valuable tool in optimizing performance and helping reduce fatigue-related injuries in a variety of fields.</p></div>\",\"PeriodicalId\":55046,\"journal\":{\"name\":\"Human Movement Science\",\"volume\":\"94 \",\"pages\":\"Article 103182\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Movement Science\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167945724000058\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Movement Science","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167945724000058","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The interplay of fatigue dynamics and task achievement using optimal control predictive simulation
Predictive simulation of human motion could provide insight into optimal techniques. In repetitive or long-duration tasks, these simulations must predict fatigue-induced adaptation. However, most studies minimize cost function terms related to actuator activations, assuming it minimizes fatigue. An additional modeling layer is needed to consider the previous use of muscles to reveal adaptive strategies to the decreased force production capability. Here, we propose interfacing Xia's three-compartment fatigue dynamics model with rigid-body dynamics. A stabilization invariant was added to Xia's model. We simulated the maximum repetition of dumbbell biceps curls as an optimal control problem (OCP) using direct multiple shooting. We explored three cost functions (minimizing torque, fatigue, or both) and two OCP formulations (full-horizon and sliding-horizon approaches). We adapted Xia's model by adding a stabilization invariant coefficients for direct multiple shooting. Sliding-horizon OCPs achieved 20 to 21 repetitions. The kinematic strategy slowly deviated from a plausible dumbbell lifting task to a swinging strategy as fatigue onset increasingly compromised the humerus to remain vertical. In full-horizon OCPs, the latter kinematic strategy was used over the whole motion, resulting in 32 repetitions. We showed that sliding-horizon OCPs revealed a reactive strategy to fatigue when only torque was included in the cost function, whereas an anticipatory strategy was revealed when the fatigue term was included in the cost function. Overall, the proposed approach has the potential to be a valuable tool in optimizing performance and helping reduce fatigue-related injuries in a variety of fields.
期刊介绍:
Human Movement Science provides a medium for publishing disciplinary and multidisciplinary studies on human movement. It brings together psychological, biomechanical and neurophysiological research on the control, organization and learning of human movement, including the perceptual support of movement. The overarching goal of the journal is to publish articles that help advance theoretical understanding of the control and organization of human movement, as well as changes therein as a function of development, learning and rehabilitation. The nature of the research reported may vary from fundamental theoretical or empirical studies to more applied studies in the fields of, for example, sport, dance and rehabilitation with the proviso that all studies have a distinct theoretical bearing. Also, reviews and meta-studies advancing the understanding of human movement are welcome.
These aims and scope imply that purely descriptive studies are not acceptable, while methodological articles are only acceptable if the methodology in question opens up new vistas in understanding the control and organization of human movement. The same holds for articles on exercise physiology, which in general are not supported, unless they speak to the control and organization of human movement. In general, it is required that the theoretical message of articles published in Human Movement Science is, to a certain extent, innovative and not dismissible as just "more of the same."