{"title":"自动合成循环神经元,从数控机床操作员身上进行模仿学习","authors":"Hoa Thi Nguyen;Roland Olsson;Øystein Haugen","doi":"10.1109/OJIES.2024.3363500","DOIUrl":null,"url":null,"abstract":"Analyzing time series data in industrial settings demands domain knowledge and computer science expertise to develop effective algorithms. AutoML approaches aim to automate this process, reducing human bias and improving accuracy and cost-effectiveness. This article applies an evolutionary algorithm to synthesize recurrent neurons optimized for specific datasets. This adds another layer to the AutoML framework, targeting the internal structure of neurons. We developed an imitation learning control system for an industry CNC machine to enhance operators' productivity. We specifically examine two recorded operator actions: adjusting the engagement rates for linear feed rate and spindle velocity. We compare the performance of our evolved neurons with support vector machine and four well-established neural network models commonly used for time series data: simple recurrent neural networks, long-short-term-memory, independently recurrent neural networks, and transformers. The results demonstrate that the neurons evolved via the evolutionary approach exhibit lower syntactic complexity than LSTMs and achieve lower error rates than other networks. They yield error rates 270% lower for the first operation action, while the error rates are 20% lower for the second action. We also show that our evolutionary algorithm is capable of creating skip-connections and gating mechanisms adapted to the specific characteristics of our dataset.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"91-108"},"PeriodicalIF":5.2000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10423805","citationCount":"0","resultStr":"{\"title\":\"Automatic Synthesis of Recurrent Neurons for Imitation Learning From CNC Machine Operators\",\"authors\":\"Hoa Thi Nguyen;Roland Olsson;Øystein Haugen\",\"doi\":\"10.1109/OJIES.2024.3363500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyzing time series data in industrial settings demands domain knowledge and computer science expertise to develop effective algorithms. AutoML approaches aim to automate this process, reducing human bias and improving accuracy and cost-effectiveness. This article applies an evolutionary algorithm to synthesize recurrent neurons optimized for specific datasets. This adds another layer to the AutoML framework, targeting the internal structure of neurons. We developed an imitation learning control system for an industry CNC machine to enhance operators' productivity. We specifically examine two recorded operator actions: adjusting the engagement rates for linear feed rate and spindle velocity. We compare the performance of our evolved neurons with support vector machine and four well-established neural network models commonly used for time series data: simple recurrent neural networks, long-short-term-memory, independently recurrent neural networks, and transformers. The results demonstrate that the neurons evolved via the evolutionary approach exhibit lower syntactic complexity than LSTMs and achieve lower error rates than other networks. They yield error rates 270% lower for the first operation action, while the error rates are 20% lower for the second action. We also show that our evolutionary algorithm is capable of creating skip-connections and gating mechanisms adapted to the specific characteristics of our dataset.\",\"PeriodicalId\":52675,\"journal\":{\"name\":\"IEEE Open Journal of the Industrial Electronics Society\",\"volume\":\"5 \",\"pages\":\"91-108\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10423805\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10423805/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10423805/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Automatic Synthesis of Recurrent Neurons for Imitation Learning From CNC Machine Operators
Analyzing time series data in industrial settings demands domain knowledge and computer science expertise to develop effective algorithms. AutoML approaches aim to automate this process, reducing human bias and improving accuracy and cost-effectiveness. This article applies an evolutionary algorithm to synthesize recurrent neurons optimized for specific datasets. This adds another layer to the AutoML framework, targeting the internal structure of neurons. We developed an imitation learning control system for an industry CNC machine to enhance operators' productivity. We specifically examine two recorded operator actions: adjusting the engagement rates for linear feed rate and spindle velocity. We compare the performance of our evolved neurons with support vector machine and four well-established neural network models commonly used for time series data: simple recurrent neural networks, long-short-term-memory, independently recurrent neural networks, and transformers. The results demonstrate that the neurons evolved via the evolutionary approach exhibit lower syntactic complexity than LSTMs and achieve lower error rates than other networks. They yield error rates 270% lower for the first operation action, while the error rates are 20% lower for the second action. We also show that our evolutionary algorithm is capable of creating skip-connections and gating mechanisms adapted to the specific characteristics of our dataset.
期刊介绍:
The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments.
Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.