Chun Yin Lee, Kin Yau Wong, Dipankar Bandyopadhyay
{"title":"部分线性单指数治愈模型与非参数发病联系函数。","authors":"Chun Yin Lee, Kin Yau Wong, Dipankar Bandyopadhyay","doi":"10.1177/09622802241227960","DOIUrl":null,"url":null,"abstract":"<p><p>In cancer studies, it is commonplace that a fraction of patients participating in the study are <i>cured</i>, such that not all of them will experience a recurrence, or death due to cancer. Also, it is plausible that some covariates, such as the treatment assigned to the patients or demographic characteristics, could affect both the patients' survival rates and cure/incidence rates. A common approach to accommodate these features in survival analysis is to consider a mixture cure survival model with the incidence rate modeled by a logistic regression model and latency part modeled by the Cox proportional hazards model. These modeling assumptions, though typical, restrict the structure of covariate effects on both the incidence and latency components. As a plausible recourse to attain flexibility, we study a class of semiparametric mixture cure models in this article, which incorporates two single-index functions for modeling the two regression components. A hybrid nonparametric maximum likelihood estimation method is proposed, where the cumulative baseline hazard function for uncured subjects is estimated nonparametrically, and the two single-index functions are estimated via Bernstein polynomials. Parameter estimation is carried out via a curated expectation-maximization algorithm. We also conducted a large-scale simulation study to assess the finite-sample performance of the estimator. The proposed methodology is illustrated via application to two cancer datasets.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"498-514"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296351/pdf/","citationCount":"0","resultStr":"{\"title\":\"Partly linear single-index cure models with a nonparametric incidence link function.\",\"authors\":\"Chun Yin Lee, Kin Yau Wong, Dipankar Bandyopadhyay\",\"doi\":\"10.1177/09622802241227960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In cancer studies, it is commonplace that a fraction of patients participating in the study are <i>cured</i>, such that not all of them will experience a recurrence, or death due to cancer. Also, it is plausible that some covariates, such as the treatment assigned to the patients or demographic characteristics, could affect both the patients' survival rates and cure/incidence rates. A common approach to accommodate these features in survival analysis is to consider a mixture cure survival model with the incidence rate modeled by a logistic regression model and latency part modeled by the Cox proportional hazards model. These modeling assumptions, though typical, restrict the structure of covariate effects on both the incidence and latency components. As a plausible recourse to attain flexibility, we study a class of semiparametric mixture cure models in this article, which incorporates two single-index functions for modeling the two regression components. A hybrid nonparametric maximum likelihood estimation method is proposed, where the cumulative baseline hazard function for uncured subjects is estimated nonparametrically, and the two single-index functions are estimated via Bernstein polynomials. Parameter estimation is carried out via a curated expectation-maximization algorithm. We also conducted a large-scale simulation study to assess the finite-sample performance of the estimator. The proposed methodology is illustrated via application to two cancer datasets.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"498-514\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296351/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802241227960\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241227960","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Partly linear single-index cure models with a nonparametric incidence link function.
In cancer studies, it is commonplace that a fraction of patients participating in the study are cured, such that not all of them will experience a recurrence, or death due to cancer. Also, it is plausible that some covariates, such as the treatment assigned to the patients or demographic characteristics, could affect both the patients' survival rates and cure/incidence rates. A common approach to accommodate these features in survival analysis is to consider a mixture cure survival model with the incidence rate modeled by a logistic regression model and latency part modeled by the Cox proportional hazards model. These modeling assumptions, though typical, restrict the structure of covariate effects on both the incidence and latency components. As a plausible recourse to attain flexibility, we study a class of semiparametric mixture cure models in this article, which incorporates two single-index functions for modeling the two regression components. A hybrid nonparametric maximum likelihood estimation method is proposed, where the cumulative baseline hazard function for uncured subjects is estimated nonparametrically, and the two single-index functions are estimated via Bernstein polynomials. Parameter estimation is carried out via a curated expectation-maximization algorithm. We also conducted a large-scale simulation study to assess the finite-sample performance of the estimator. The proposed methodology is illustrated via application to two cancer datasets.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)