具有动态 EOV 消除和预测性混合信号阻抗增强功能的 0.00179 mm2/Ch 斩波稳定 TDMA 神经记录系统。

Nader Sherif Kassem Fathy;Ritwik Vatsyayan;Andrew M. Bourhis;Shadi A. Dayeh;Patrick P. Mercier
{"title":"具有动态 EOV 消除和预测性混合信号阻抗增强功能的 0.00179 mm2/Ch 斩波稳定 TDMA 神经记录系统。","authors":"Nader Sherif Kassem Fathy;Ritwik Vatsyayan;Andrew M. Bourhis;Shadi A. Dayeh;Patrick P. Mercier","doi":"10.1109/TBCAS.2024.3366649","DOIUrl":null,"url":null,"abstract":"This article presents a digitally-assisted multi-channel neural recording system. The system uses a 16-channel chopper-stabilized Time Division Multiple Access (TDMA) scheme to record multiplexed neural signals into a single shared analog front end (AFE). The choppers reduce the total integrated noise across the modulated spectrum by 2.4\n<inline-formula><tex-math>$ \\times $</tex-math></inline-formula>\n and 4.3\n<inline-formula><tex-math>$ \\times $</tex-math></inline-formula>\n in Local Field Potential (LFP) and Action Potential (AP) bands, respectively. In addition, a novel impedance booster based on Sign-Sign least mean squares (LMS) adaptive filter (AF) predicts the input signal and pre-charges the AC-coupling capacitors. The impedance booster module increases the AFE input impedance by a factor of 39\n<inline-formula><tex-math>$ \\times $</tex-math></inline-formula>\n with a 7.1% increase in area. The proposed system obviates the need for on-chip digital demodulation, filtering, and remodulation normally required to extract Electrode Offset Voltages (EOV) from multiplexed neural signals, thereby achieving 3.6\n<inline-formula><tex-math>$ \\times $</tex-math></inline-formula>\n and 2.8\n<inline-formula><tex-math>$ \\times $</tex-math></inline-formula>\n savings in both area and power, respectively, in the EOV filter module. The Sign-Sign LMS AF is reused to determine the system loop gain, which relaxes the feedback DAC accuracy requirements and saves 10.1\n<inline-formula><tex-math>$ \\times $</tex-math></inline-formula>\n in power compared to conventional oversampled DAC truncation-error ΔΣ-modulator. The proposed SoC is designed and fabricated in 65 nm CMOS, and each channel occupies 0.00179 mm\n<sup>2</sup>\n of active area. Each channel consumes 5.11 μW of power while achieving 2.19 μV\n<sub>rms</sub>\n and 2.4 μV\n<sub>rms</sub>\n of input referred noise (IRN) over AP and LFP bands. The resulting AP band noise efficiency factor (NEF) is 1.8. The proposed system is verified with acute \n<italic>in-vivo</i>\n recordings in a Sprague-Dawley rat using parylene C based thin-film platinum nanorod microelectrodes.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 0.00179 mm2/Ch Chopper-Stabilized TDMA Neural Recording System With Dynamic EOV Cancellation and Predictive Mixed-Signal Impedance Boosting\",\"authors\":\"Nader Sherif Kassem Fathy;Ritwik Vatsyayan;Andrew M. Bourhis;Shadi A. Dayeh;Patrick P. Mercier\",\"doi\":\"10.1109/TBCAS.2024.3366649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a digitally-assisted multi-channel neural recording system. The system uses a 16-channel chopper-stabilized Time Division Multiple Access (TDMA) scheme to record multiplexed neural signals into a single shared analog front end (AFE). The choppers reduce the total integrated noise across the modulated spectrum by 2.4\\n<inline-formula><tex-math>$ \\\\times $</tex-math></inline-formula>\\n and 4.3\\n<inline-formula><tex-math>$ \\\\times $</tex-math></inline-formula>\\n in Local Field Potential (LFP) and Action Potential (AP) bands, respectively. In addition, a novel impedance booster based on Sign-Sign least mean squares (LMS) adaptive filter (AF) predicts the input signal and pre-charges the AC-coupling capacitors. The impedance booster module increases the AFE input impedance by a factor of 39\\n<inline-formula><tex-math>$ \\\\times $</tex-math></inline-formula>\\n with a 7.1% increase in area. The proposed system obviates the need for on-chip digital demodulation, filtering, and remodulation normally required to extract Electrode Offset Voltages (EOV) from multiplexed neural signals, thereby achieving 3.6\\n<inline-formula><tex-math>$ \\\\times $</tex-math></inline-formula>\\n and 2.8\\n<inline-formula><tex-math>$ \\\\times $</tex-math></inline-formula>\\n savings in both area and power, respectively, in the EOV filter module. The Sign-Sign LMS AF is reused to determine the system loop gain, which relaxes the feedback DAC accuracy requirements and saves 10.1\\n<inline-formula><tex-math>$ \\\\times $</tex-math></inline-formula>\\n in power compared to conventional oversampled DAC truncation-error ΔΣ-modulator. The proposed SoC is designed and fabricated in 65 nm CMOS, and each channel occupies 0.00179 mm\\n<sup>2</sup>\\n of active area. Each channel consumes 5.11 μW of power while achieving 2.19 μV\\n<sub>rms</sub>\\n and 2.4 μV\\n<sub>rms</sub>\\n of input referred noise (IRN) over AP and LFP bands. The resulting AP band noise efficiency factor (NEF) is 1.8. The proposed system is verified with acute \\n<italic>in-vivo</i>\\n recordings in a Sprague-Dawley rat using parylene C based thin-film platinum nanorod microelectrodes.\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10444565/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10444565/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种数字辅助多通道神经记录系统。该系统采用 16 通道斩波稳定时分多址(TDMA)方案,将多路神经信号记录到单个共享模拟前端(AFE)中。在局部场电位(LFP)和动作电位(AP)频段,斩波器将整个调制频谱的总综合噪声分别降低了 2.4 倍和 4.3 倍。此外,基于 Sign-Sign 最小均方差(LMS)自适应滤波器(AF)的新型阻抗增强器可预测输入信号并对交流耦合电容器进行预充电。阻抗增压器模块将 AFE 输入阻抗提高了 39 倍,而面积只增加了 7.1%。拟议的系统省去了从多路复用神经信号中提取电极偏移电压(EOV)通常所需的片上数字解调、滤波和重调制,从而使 EOV 滤波器模块的面积和功耗分别节省了 3.6 倍和 2.8 倍。Sign-Sign LMS AF 被重新用于确定系统环路增益,从而放宽了对反馈 DAC 精度的要求,与传统的过采样 DAC 截断误差 ΔΣ 调制器相比,可节省 10.1 倍的功耗。拟议的 SoC 采用 65 纳米 CMOS 设计和制造,每个通道占用 0.00179 平方毫米的有效面积。每个通道的功耗为 5.11 μW,同时在 AP 和 LFP 波段实现了 2.19 μVrms 和 2.4 μVrms 的输入参考噪声 (IRN)。由此产生的 AP 波段噪声效率系数 (NEF) 为 1.8。使用基于对二甲苯 C 的薄膜铂纳米棒微电极对 Sprague-Dawley 大鼠进行急性体内记录,验证了所提出的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A 0.00179 mm2/Ch Chopper-Stabilized TDMA Neural Recording System With Dynamic EOV Cancellation and Predictive Mixed-Signal Impedance Boosting
This article presents a digitally-assisted multi-channel neural recording system. The system uses a 16-channel chopper-stabilized Time Division Multiple Access (TDMA) scheme to record multiplexed neural signals into a single shared analog front end (AFE). The choppers reduce the total integrated noise across the modulated spectrum by 2.4 $ \times $ and 4.3 $ \times $ in Local Field Potential (LFP) and Action Potential (AP) bands, respectively. In addition, a novel impedance booster based on Sign-Sign least mean squares (LMS) adaptive filter (AF) predicts the input signal and pre-charges the AC-coupling capacitors. The impedance booster module increases the AFE input impedance by a factor of 39 $ \times $ with a 7.1% increase in area. The proposed system obviates the need for on-chip digital demodulation, filtering, and remodulation normally required to extract Electrode Offset Voltages (EOV) from multiplexed neural signals, thereby achieving 3.6 $ \times $ and 2.8 $ \times $ savings in both area and power, respectively, in the EOV filter module. The Sign-Sign LMS AF is reused to determine the system loop gain, which relaxes the feedback DAC accuracy requirements and saves 10.1 $ \times $ in power compared to conventional oversampled DAC truncation-error ΔΣ-modulator. The proposed SoC is designed and fabricated in 65 nm CMOS, and each channel occupies 0.00179 mm 2 of active area. Each channel consumes 5.11 μW of power while achieving 2.19 μV rms and 2.4 μV rms of input referred noise (IRN) over AP and LFP bands. The resulting AP band noise efficiency factor (NEF) is 1.8. The proposed system is verified with acute in-vivo recordings in a Sprague-Dawley rat using parylene C based thin-film platinum nanorod microelectrodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic sub-array selection-based energy-efficient localization and tracking method to power implanted medical devices in scattering heterogenous media employing ultrasound. A Reconfigurable Bidirectional Wireless Power and Full-Duplex Data Transceiver IC for Wearable Biomedical Applications. An Ultrasonic Transceiver for Non-Invasive Intracranial Pressure Sensing. BrainForest: Neuromorphic Multiplier-Less Bit-Serial Weight-Memory-Optimized 1024-Tree Brain-State Classification Processor. Fully Integrated Pneumatic-Free and Magnet-Free CMOS Ferrofluidic Platform for Comprehensive Biomolecular Processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1